1.中国科学院 上海技术物理研究所,上海 200083
2.中国科学院大学,北京 100049
3.中国科学院 红外探测与成像技术实验室,上海 200083
[ "雷 腾(1997-),男,广东东莞人,博士研究生,主要从事计算光学成像、红外探测成像系统技术及数字图像处理方面的研究。E-mail: leiteng@mail.sitp.ac.cn" ]
[ "王世勇(1972-),男,吉林人,研究员,博士生导师,2002年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事红外光电系统技术、红外图像信号处理等方面的研究。E-mail:s_y_w@sina.com" ]
扫 描 看 全 文
雷腾,张义民,马一哲等.低秩聚类被动压缩鬼成像[J].光学精密工程,2024,32(01):12-23.
LEI Teng,ZHANG Yiming,MA Yizhe,et al.Passive compressive ghost imaging with low rank clustering[J].Optics and Precision Engineering,2024,32(01):12-23.
雷腾,张义民,马一哲等.低秩聚类被动压缩鬼成像[J].光学精密工程,2024,32(01):12-23. DOI: 10.37188/OPE.20243201.0012.
LEI Teng,ZHANG Yiming,MA Yizhe,et al.Passive compressive ghost imaging with low rank clustering[J].Optics and Precision Engineering,2024,32(01):12-23. DOI: 10.37188/OPE.20243201.0012.
低采样率下的高质量鬼成像(GI)对于科学研究和实际应用具有重要意义,为了在低采样率条件下重建高质量图像,提出了一种高质量的被动式压缩鬼成像重构算法(PCGI-LRC)。基于图像的非局域相似块堆叠而成的矩阵具有低秩和稀疏奇异值的假设,从理论和实验上证明了一种对最小二乘问题与非局域相似块低秩近似问题进行联合迭代求解的方法,能够在低采样率(6.25%~50%)条件下实现高质量鬼成像。实验结果表明:与基于稀疏基约束的GI(GI-SBC)和基于全变分约束的GI(GI-TVC)相比,PCGI-LRC在峰值信噪比、结构相似性系数和视觉观测等方面均更优,在抑制重构噪声的同时保持了目标的细节信息,其中PSNR提升效果优于1.1 dB,SSIM提升效果优于0.04。
High-quality ghost imaging (GI) at low sampling rate is of great importance for scientific research and practical applications. Therefore, the reconstruction of high-quality images under low sampling rate conditions remains the focus of GI research. In this paper, a high-quality passive compressive ghost image reconstruction algorithm was proposed, called PCGI-LRC. Based on the assumption that the matrices stacked with nonlocal similar blocks of an image have low-rank and sparse singular values, a joint iterative solution of the least squares problem was demonstrated theoretically and experimentally and the low-rank approximation problem of the nonlocal similar blocks can achieve high-quality ghost images under low sampling rate conditions (6.25%-50%). Moreover, the experimental results show that the proposed algorithm outperforms the GI based on sparse basis constraints (GI-SBC) and GI based on full variational constraints (GI-TVC) algorithms regarding peak signal-to-noise ratio (PSNR), structural similarity coefficient (SSIM), and visual observation. Information of the target is preserved while the reconstruction noise is suppressed; the PSNR is improved by more than 1.1 dB and the SSIM improvement is higher than 0.04 dB.
鬼成像图像重构图像压缩单像素成像
ghost imagingimage reconstructionimage suppressionsingle pixel imaging
STREKALOV D V, SERGIENKO A V, KLYSHKO D N, et al. Observation of two-photon “ghost” interference and diffraction[J]. Physical Review Letters, 1995, 74(18): 3600-3603. doi: 10.1103/physrevlett.74.3600http://dx.doi.org/10.1103/physrevlett.74.3600
PITTMAN T B, SHIH Y H, STREKALOV D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 1995, 52(5): R3429-R3432. doi: 10.1103/physreva.52.r3429http://dx.doi.org/10.1103/physreva.52.r3429
BENNINK R S, BENTLEY S J, BOYD R W. “two-photon” coincidence imaging with a classical source[J]. Physical Review Letters, 2002, 89(11): 113601. doi: 10.1103/physrevlett.89.113601http://dx.doi.org/10.1103/physrevlett.89.113601
SCARCELLI G, BERARDI V, SHIH Y. Quantum interference approach to two-photon correlation phenomena of chaotic light[J]. Journal of Modern Optics, 2006, 53(16/17): 2279-2292. doi: 10.1080/09500340600893818http://dx.doi.org/10.1080/09500340600893818
SHAPIRO J H. Computational ghost imaging[J]. Physical Review A, 2008, 78(6): 061802. doi: 10.1103/physreva.78.061802http://dx.doi.org/10.1103/physreva.78.061802
LIU Z T, TAN S Y, WU J R, et al. Spectral camera based on ghost imaging via sparsity constraints[J]. Scientific Reports, 2016, 6: 25718. doi: 10.1038/srep25718http://dx.doi.org/10.1038/srep25718
孙鸣捷, 闫崧明, 王思源. 鬼成像和单像素成像技术中的重建算法[J]. 激光与光电子学进展, 2022, 59(2): 0200001. doi: 10.3788/LOP202259.0200001http://dx.doi.org/10.3788/LOP202259.0200001
SUN M J, YAN S M, WANG S Y. Reconstruction algorithm in ghost imaging and single pixel imaging technology[J]. Laser & Optoelectronics Progress, 2022, 59(2): 0200001.(in Chinese). doi: 10.3788/LOP202259.0200001http://dx.doi.org/10.3788/LOP202259.0200001
TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. doi: 10.1109/tit.2007.909108http://dx.doi.org/10.1109/tit.2007.909108
NEEDELL D, VERSHYNIN R. Greedy signal recovery and uncertainty principles[C].Proc SPIE 6814, Computational Imaging VI, 2008, 6814: 139-150. doi: 10.1117/12.776996http://dx.doi.org/10.1117/12.776996
CHEN S S, DONOHO D L, SAUNDERS M A. Atomic decomposition by basis pursuit[J]. SIAM Review, 2001, 43(1): 129-159. doi: 10.1137/s003614450037906xhttp://dx.doi.org/10.1137/s003614450037906x
BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202. doi: 10.1137/080716542http://dx.doi.org/10.1137/080716542
CANDES E J, TAO T. Near-optimal signal recovery from random projections: universal encoding strategies?[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425. doi: 10.1109/tit.2006.885507http://dx.doi.org/10.1109/tit.2006.885507
CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. doi: 10.1109/tit.2005.862083http://dx.doi.org/10.1109/tit.2005.862083
BIOUCAS-DIAS J M, FIGUEIREDO M A T. Two-step algorithms for linear inverse problems with non-quadratic regularization[C].2007 IEEE International Conference on Image Processing. September 16-October 19, 2007. San Antonio, TX, USA. IEEE, 2007, 1: I-105-I-108. doi: 10.1109/icip.2007.4378902http://dx.doi.org/10.1109/icip.2007.4378902
BECKER S, BOBIN J, CANDÈS E J. NESTA: a fast and accurate first-order method for sparse recovery[J]. SIAM Journal on Imaging Sciences, 2011, 4(1): 1-39. doi: 10.1137/090756855http://dx.doi.org/10.1137/090756855
YUAN X. Generalized alternating projection based total variation minimization for compressive sensing[C].2016 IEEE International Conference on Image Processing (ICIP). September 25-28, 2016. Phoenix, AZ, USA. IEEE, 2016: 2539-2543.
WAHLBERG B, BOYD S, ANNERGREN M, et al. An ADMM algorithm for a class of total variation regularized estimation problems[J]. IFAC Proceedings Volumes, 2012, 45(16): 83-88. doi: 10.3182/20120711-3-be-2027.00310http://dx.doi.org/10.3182/20120711-3-be-2027.00310
LI C B, YIN W T, JIANG H, et al. An efficient augmented Lagrangian method with applications to total variation minimization[J].Computational Optimization and Applications, 2013, 56(3): 507-530. doi: 10.1007/s10589-013-9576-1http://dx.doi.org/10.1007/s10589-013-9576-1
WANG P W, WANG C L, YU C P, et al. Color ghost imaging via sparsity constraint and non-local self-similarity[J]. Chinese Optics Letters, 2021, 19(2): 021102. doi: 10.3788/col202119.021102http://dx.doi.org/10.3788/col202119.021102
KATZ O, BROMBERG Y, SILBERBERG Y. Compressive ghost imaging[J]. Applied Physics Letters, 2009, 95(13): 131110. doi: 10.1063/1.3238296http://dx.doi.org/10.1063/1.3238296
BROMBERG Y, KATZ O, SILBERBERG Y. Ghost imaging with a single detector[J]. Physical Review A, 2009, 79(5): 053840. doi: 10.1103/physreva.79.053840http://dx.doi.org/10.1103/physreva.79.053840
LI W W, TONG Z S, XIAO K, et al. Single-frame wide-field nanoscopy based on ghost imaging via sparsity constraints[J]. Optica, 2019, 6(12): 1515-1523. doi: 10.1364/optica.6.001515http://dx.doi.org/10.1364/optica.6.001515
LIU S, LIU Z, HU C, et al. Spectral ghost imaging camera with super-Rayleigh modulator[J]. Optics Communications, 2020, 472: 126017. doi: 10.1016/j.optcom.2020.126017http://dx.doi.org/10.1016/j.optcom.2020.126017
CHU C Y, LIU S Y, LIU Z T, et al. Spectral polarization camera based on ghost imaging via sparsity constraints[J]. Applied Optics, 2021, 60(16): 4632-4638. doi: 10.1364/ao.417022http://dx.doi.org/10.1364/ao.417022
WANG T, CHEN M Y, WU H, et al. Underwater compressive computational ghost imaging with wavelet enhancement[J]. Applied Optics, 2021, 60(23): 6950-6957. doi: 10.1364/ao.431712http://dx.doi.org/10.1364/ao.431712
HUANG H, ZHOU C, TIAN T, et al. High-quality compressive ghost imaging[J]. Optics Communications, 2018, 412: 60-65. doi: 10.1016/j.optcom.2017.12.010http://dx.doi.org/10.1016/j.optcom.2017.12.010
WU G H, LI T H, LI J H, et al. Ghost imaging under low-rank constraint[J]. Optics Letters, 2019, 44(17): 4311-4314. doi: 10.1364/ol.44.004311http://dx.doi.org/10.1364/ol.44.004311
吴建荣, 沈夏, 喻虹, 等. 基于相位调制的单次曝光压缩感知成像[J]. 光学学报, 2014, 34(10): 1011005. doi: 10.3788/aos201434.1011005http://dx.doi.org/10.3788/aos201434.1011005
WU J R, SHEN X, YU H, et al. Snapshot compressive imaging by phase modulation[J]. Acta Optica Sinica, 2014, 34(10): 1011005.(in Chinese). doi: 10.3788/aos201434.1011005http://dx.doi.org/10.3788/aos201434.1011005
穆哲. 电容层析成像图像重建算法研究[D]. 兰州: 西北师范大学, 2021.
MU ZH. Research on Image Reconstruction Algorithm of Electrical Capacitance Tomography[D]. Lanzhou: Northwest Normal University, 2021. (in Chinese)
CANDÈS E, RECHT B. Exact matrix completion via convex optimization[J]. Communications of the ACM, 2012, 55(6): 111-119. doi: 10.1145/2184319.2184343http://dx.doi.org/10.1145/2184319.2184343
CAI J F, CANDÈS E J, SHEN Z W. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956-1982. doi: 10.1137/080738970http://dx.doi.org/10.1137/080738970
XIE Y, GU S H, LIU Y, et al. Weighted schatten p-norm minimization for image denoising and background subtraction[J]. IEEE Transactions on Image Processing, 2016, 25(10): 4842-4857. doi: 10.1109/tip.2016.2599290http://dx.doi.org/10.1109/tip.2016.2599290
ZUO W M, MENG D Y, ZHANG L, et al. A generalized iterated shrinkage algorithm for non-convex sparse coding[C].2013 IEEE International Conference on Computer Vision. December 1-8, 2013. Sydney, Australia. IEEE, 2013: 217-224.
0
浏览量
12
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构