北京控制工程研究所 空间光电测量与感知实验室,北京 100190
[ "鲍 捷(1999-),女,浙江临海人,硕士研究生,2021年于北京工业大学获得学士学位,主要从事空间光电及视觉测量技术方面的研究。E-mail: bao2007jie@126.com" ]
[ "赵春晖(1972-),男,河南人,研究员,博士生导师,主要从事空间光电及视觉测量技术的研究。E-mail:saobear@163.com" ]
扫 描 看 全 文
鲍捷,刘兴潭,陈建武等.星载InSAR基线构型测量误差模型与灵敏度分析[J].光学精密工程,2024,32(01):33-42.
BAO Jie,LIU Xingtan,CHEN Jianwu,et al.Error modeling and sensitivity analysis for space-borne InSAR baseline configuration measurement[J].Optics and Precision Engineering,2024,32(01):33-42.
鲍捷,刘兴潭,陈建武等.星载InSAR基线构型测量误差模型与灵敏度分析[J].光学精密工程,2024,32(01):33-42. DOI: 10.37188/OPE.20243201.0033.
BAO Jie,LIU Xingtan,CHEN Jianwu,et al.Error modeling and sensitivity analysis for space-borne InSAR baseline configuration measurement[J].Optics and Precision Engineering,2024,32(01):33-42. DOI: 10.37188/OPE.20243201.0033.
为避免双天线InSAR系统基线测量动态监测过程中引入误差,影响基线测量精度,对基线长度与角度测量过程中的可能误差进行定性与定量分析。采用坐标变换法建立系统误差数学模型,明确测量系统的误差来源。提出误差灵敏度概念,对误差项进行定量计算,并对每一自由度的误差源进行灵敏度分析,进一步形成综合误差定量合成结果。根据误差灵敏度系数给出一组精度反演误差分配案例。最后,依据蒙特卡洛法在MATLAB平台闭环验证精度量化分配方法的可行性与稳定性。仿真分析结果表明,激光视觉三轴位置的测量精度要求为300 μm(3,σ,),三轴角度的测量精度要求为50''(3,σ,),即可满足基线长度精度1 mm(1.6,σ,),基线角度精度2''(1.6,σ,)。通过本方法可由测量环境条件输入直接获得基线测量的精度,根据灵敏度系数对误差分配进行反演可以得到系统最优布局,其结果可为测量系统的方案设计与精度分解提供有效指导。
Possible errors in baseline length and angle measurements are qualitatively and quantitatively analyzed to reduce errors in the dynamic monitoring of baseline measurements of the dual-antenna InSAR system that affect the baseline measurement accuracy. First, by establishing a systematic error model, the error source of the measurement system was identified. The error sensitivity was introduced to quantitatively estimate the error term and conduct sensitivity analysis of the error term for each degree of freedom, further generating quantitative synthesis results of the comprehensive error. A set of accuracy inversion error assignment cases was analyzed. The Monte Carlo method was used to verify the feasibility and robustness of the proposed method for accurate quantitative analysis allocation in a simulation closed-loop. The simulation analysis results show that when the accuracy of the position measurements is 300 μm (3σ), and the accuracy of the triaxial angle measurements is 50'' (3σ), the baseline length accuracy can reach 1 mm (1.6σ), and the baseline angle accuracy is 2″ (1.6σ). By using this method, the accuracy of baseline measurements can be obtained directly from the input of the measured environmental conditions. The inversion of the error assignments according to the sensitivity coefficient yields the optimal layout of the system. The results are valuable for effectively guiding scheme designs and analyzing the error distribution of the measurement system.
干涉合成孔径雷达基线测量误差模型灵敏度分析
interferometric synthetic aperture radar(InSAR)baseline measurementerror modelsensitivity analysis
ROSEN P A, HENSLEY S, JOUGHIN I R, et al. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE, 2000, 88(3): 333-382. doi: 10.1109/5.838084http://dx.doi.org/10.1109/5.838084
王超, 张红, 刘智.星载合成孔径雷达干涉测量[M].北京:科学出版社, 2002.
WANG CH, ZHANG H, LIU ZH. Spaceborne Synthetic Aperture Radar Interferometry[M]. Beijing: Science Press, 2002.(in Chinese)
SULLIVAN R J. Radar Foundations for Imaging and Advanced Concepts[M]. Raleigh, NC: SciTech Publishing Inc., 2004. doi: 10.1049/sbra030ehttp://dx.doi.org/10.1049/sbra030e
KNEDLIK S, LOFFELD O. Baseline estimation and prediction referring to the SRTM[C]. IEEE International Geoscience and Remote Sensing Symposium. Toronto, Ont., Canada. IEEE, 2002.
卢正方, 刘波, 陈立福, 等. InSAR高度计基线抖动对相对高程精度的影响分析[J]. 工业控制计算机, 2021, 34(8):76-78, 129. doi: 10.3969/j.issn.1001-182X.2021.08.027http://dx.doi.org/10.3969/j.issn.1001-182X.2021.08.027
LU ZH F, LIU B, CHEN L F, et al. Analysis of influence of InSAR altimeter baseline jitter on relative elevation accuracy[J]. Industrial Control Computer, 2021, 34(8):76-78, 129. (in Chinese). doi: 10.3969/j.issn.1001-182X.2021.08.027http://dx.doi.org/10.3969/j.issn.1001-182X.2021.08.027
李世忠,邵龙,黄志勇,等. 分布式InSAR卫星系统星间高精度基线测量方法[C]. 第八届高分辨率对地观测学术年会,北京,2022. doi: 10.11947/j.AGCS.2022.20210397http://dx.doi.org/10.11947/j.AGCS.2022.20210397
LI SH ZH, SHAO L, HUANG ZH Y, et al. The method of high-precision baseline measurement intersatellites in distributed insar satellite system[C]. The 8th China High Resolution Earth Observation Conference, Beijing, 2022. (in Chinese). doi: 10.11947/j.AGCS.2022.20210397http://dx.doi.org/10.11947/j.AGCS.2022.20210397
RABUS B, EINEDER M, ROTH A, et al. The shuttle radar topography mission-a new class of digital elevation models acquired by spaceborne radar[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2003, 57(4): 241-262. doi: 10.1016/s0924-2716(02)00124-7http://dx.doi.org/10.1016/s0924-2716(02)00124-7
DUREN R M, WONG E, BRECKENRIDGE B, et al. Metrology, attitude, and orbit determination for spaceborne interferometric synthetic aperture radar[C]. Aerospace/Defense Sensing and Controls. Proc SPIE 3365, Acquisition, Tracking, and PointingXII, Orlando, FL, USA. 1998, 3365: 51-60. doi: 10.1117/12.317529http://dx.doi.org/10.1117/12.317529
WONG E, BRECKENRIDGE W, BOUSSALIS D, et al. Attitude determination for the shuttle radar topography mission[C]. Guidance, Navigation, and Control Conference and Exhibit. Portland, OR, USA. Reston, Virigina: AIAA, 1999. doi: 10.2514/6.1999-3968http://dx.doi.org/10.2514/6.1999-3968
SHEN Y, SHAFFER S J, JORDAN R L. Shuttle Radar Topography Mission (SRTM) flight system design and operations overview[C]. Proc SPIE 4152, Microwave Remote Sensing of the Atmosphere and Environment II, 2000, 4152: 167-178. doi: 10.1117/12.410595http://dx.doi.org/10.1117/12.410595
王静, 向茂生, 韦立登, 等. 基于距离约束的InSAR长基线高精度动态测量方法[J]. 电子与信息学报, 2012, 34(7): 1589-1595. doi: 10.3724/sp.j.1146.2011.01220http://dx.doi.org/10.3724/sp.j.1146.2011.01220
WANG J, XIANG M SH, WEI L D, et al. The dynamic measurement for long baseline of InSAR based on distance constraint[J]. Journal of Electronics & Information Technology, 2012, 34(7): 1589-1595.(in Chinese). doi: 10.3724/sp.j.1146.2011.01220http://dx.doi.org/10.3724/sp.j.1146.2011.01220
丁文哲, 张占月, 杨虹, 等. 星载观测平台的视线测量误差分配[J]. 空间控制技术与应用, 2017, 43(2):60-66. doi: 10.11728/cjss2017.02.238http://dx.doi.org/10.11728/cjss2017.02.238
DING W ZH, ZHANG ZH Y, YANG H, et al. Error distribution of line-of-sight measurement on the satellite borne observation platform[J]. Aerospace Control and Application, 2017, 43(2):60-66. (in Chinese). doi: 10.11728/cjss2017.02.238http://dx.doi.org/10.11728/cjss2017.02.238
郭旭, 胡春晖, 颜昌翔, 等. 基于蒙特卡罗法的星载太阳辐照度光谱仪对日指向误差分析[J]. 光学 精密工程, 2021, 29(3):474-483. doi: 10.37188/ope.20212903.0474http://dx.doi.org/10.37188/ope.20212903.0474
GUO X, HU CH H, YAN CH X, et al. Analysis of Sun pointing error of spaceborne solar spectroradiom-eter based on Monte Carlo method[J]. Opt. Precision Eng., 2021, 29(3):474-483. (in Chinese). doi: 10.37188/ope.20212903.0474http://dx.doi.org/10.37188/ope.20212903.0474
潘云, 李颐, 颜昌翔. TDLAS一氧化碳浓度检测系统误差分配[J]. 光学 精密工程, 2021, 29(7):1539-1548. doi: 10.37188/OPE.20212907.1539http://dx.doi.org/10.37188/OPE.20212907.1539
PAN Y, LI Y, YAN CH X. Error distribution for TDLAS carbon monoxide concentration measurement system[J]. Opt. Precision Eng., 2021, 29(7):1539-1548. (in Chinese). doi: 10.37188/OPE.20212907.1539http://dx.doi.org/10.37188/OPE.20212907.1539
张治彬, 李新洪, 安继萍. 基于蒙特卡罗法的轻气炮射击精度评估[J]. 空间控制技术与应用, 2019, 45(1):71-78. doi: 10.3969/j.issn.1674-1579.2019.01.012http://dx.doi.org/10.3969/j.issn.1674-1579.2019.01.012
ZHANG ZH B, LI X H, AN J P. Firing accuracy evaluation of light gas Gun based on Monte Carlo method[J]. Aerospace Control and Application, 2019, 45(1):71-78.(in Chinese). doi: 10.3969/j.issn.1674-1579.2019.01.012http://dx.doi.org/10.3969/j.issn.1674-1579.2019.01.012
0
浏览量
7
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构