1.宁波大学 机械工程与力学学院 浙江省零件轧制成形技术研究重点实验室, 浙江 宁波 315211
2.浙江大学 机械工程学院 浙江省先进制造技术重点实验室,浙江 杭州 310027
[ "吴 彤(1999-),女,浙江宁波人,硕士研究生,2021年于宁波工程学院获得学士学位,主要从事压电柔顺驱动及微纳米定位技术方面的研究。E-mail: wu15888551115@163.com" ]
[ "杨依领(1987-),男,山东菏泽人,博士,副教授,2016年于浙江大学获得博士学位,主要从事微纳驱动及精密控制、智能结构与振动控制方面的研究。E-mail:yangyiling@nbu.edu.cn" ]
扫 描 看 全 文
吴彤,杨依领,吴高华等.二自由度大行程无耦合压电粘滑定位平台[J].光学精密工程,2024,32(01):62-72.
WU Tong,YANG Yiling,WU Gaohua,et al.Two-DOF piezoelectric stick-slip positioning platform with large strokes and no coupling[J].Optics and Precision Engineering,2024,32(01):62-72.
吴彤,杨依领,吴高华等.二自由度大行程无耦合压电粘滑定位平台[J].光学精密工程,2024,32(01):62-72. DOI: 10.37188/OPE.20243201.0062.
WU Tong,YANG Yiling,WU Gaohua,et al.Two-DOF piezoelectric stick-slip positioning platform with large strokes and no coupling[J].Optics and Precision Engineering,2024,32(01):62-72. DOI: 10.37188/OPE.20243201.0062.
针对微操作与微装配任务对多维大范围精密定位运动的需求,采用粘滑驱动原理并结合压电柔顺机构设计二自由度、大行程、无耦合并联定位平台。利用桥式机构对内置压电驱动器进行位移放大,并与复合解耦结构配合构成二维柔顺驱动机构。交叉滚柱导轨则连接移动台与驱动机构,并通过预紧螺钉调整接触摩擦力,进而获得良好的粘滑运动特性。采用有限元法建立定位平台的静力学模型,并对位移放大倍数、应力和固有频率进行仿真分析。最后,搭建实验测试系统验证定位平台的输出性能。实验结果表明:在扫描驱动模式下,驱动电压为150 V时,平台,x,和,y,向的输出位移分别为63.84 μm和62.61 μm,耦合比为0.52%和0.59%,分辨率为6.5 nm和7.2 nm;在步进驱动模式下,驱动电压为120 V时,平台在,x,和,y,向的单步位移分别为47.31 μm和47.20 μm,耦合比为0.69%和0.73%,,x,正向、,x,反向、,y,正向和,y,反向的运动分辨率分别为0.49,0.47,0.47和0.42 μm,最大垂直负载为50 N,设计的压电粘滑定位平台满足所需性能要求。
Aiming at the multidimensional, extensive range, and precision positioning requirements regarding micromanipulation and micro-assembly tasks, two degree-of-freedom (DOF) parallel positioning platforms with large strokes and no coupling are designed. A bridge-type mechanism was adopted to amplify the displacement of the built-in piezoelectric actuator, and combined with a composite decoupling structure to form a two-dimensional compliant driving mechanism. Crossed roller guides connected the moving stage with the driving mechanism and adjust the contact friction via preload screws, thus good stick-slip motion characteristics were realized. Then, a finite element method was used to establish the static model of the positioning stage, and the displacement amplification, stress, and inherent frequency were simulated and analyzed. Finally, an experimental test system was built to verify the output performance of the positioning platform. The results show that in the scanning drive mode, when the driving voltage is 150 V, the output displacements of the platform in the ,x,- and ,y,- directions are 63.84 and 62.61 μm, respectively. Further, the coupling ratios are 0.52% and 0.59%, and resolutions are 6.5 nm and 7.2 nm, respectively. In the stepping drive mode, when the driving voltage is 120 V, the single-step displacements of the platform in the ,x,- and ,y,- directions correspond to 47.31 and 47.20 μm, respectively. In addition, the coupling ratios are 0.69% and 0.73%; motion resolutions in ,x,-forward, ,x,-reverse, ,y,-forward, and ,y,-reverse are 0.49, 0.47, 0.47, and 0.42 μm, respectively; and the maximum vertical load is 50 N. The designed piezoelectric stick-slip positioning platform thus meets the required performance requirements.
压电驱动桥式机构粘滑运动定位平台
piezoelectric actuationbridge mechanismstick-slip motionpositioning platform
张旭, 赖磊捷, 李朋志, 等. 电磁驱动柔顺微定位平台闭环频域逆迭代学习控制[J]. 光学 精密工程, 2021, 29(9):2149-2157. doi: 10.37188/OPE.20212909.2149http://dx.doi.org/10.37188/OPE.20212909.2149
ZHANG X, LAI L J, LI P ZH, et al. Closed-loop inverse iterative learning control in frequency-domain for electromagnetic driven compliant micro-positioning platform[J]. Opt. Precision Eng., 2021, 29(9):2149-2157.(in Chinese). doi: 10.37188/OPE.20212909.2149http://dx.doi.org/10.37188/OPE.20212909.2149
WU Y X, YANG Y L, LI G P, et al. A non-redundant piezoelectric center-rotation platform with a single-layer structure and a large working range[J]. Mechatronics, 2022, 88: 102911. doi: 10.1016/j.mechatronics.2022.102911http://dx.doi.org/10.1016/j.mechatronics.2022.102911
WU Y X, YANG Y L, LI G P, et al. Development and assessment of a novel two-degree-of-freedom vibration generator for generating and hiding optical information[J]. Mechanical Systems and Signal Processing, 2022, 181: 109470. doi: 10.1016/j.ymssp.2022.109470http://dx.doi.org/10.1016/j.ymssp.2022.109470
ABDI A, SHARIAT PANAHI M, HAIRI YAZDI M R, et al. Design and implementation of a novel vertical precision positioner[J].International Journal of Precision Engineering and Manufacturing, 2021, 22(11): 1861-1872. doi: 10.1007/s12541-021-00576-0http://dx.doi.org/10.1007/s12541-021-00576-0
李致富, 黄楠, 钟云, 等. 压电驱动器迟滞非线性的分数阶建模及实验验证[J]. 光学 精密工程, 2020, 28(5):1124-1131.
LI ZH F, HUANG N, ZHONG Y, et al. Fractional order modeling and experimental verification of hysteresis nonlinearities in piezoelectric actuators[J]. Opt. Precision Eng., 2020, 28(5):1124-1131.(in Chinese)
王耿, 魏维宁, 代军, 等. 线性偏摆复合型压电微动平台[J]. 光学 精密工程, 2022, 30(9):1058-1070. doi: 10.37188/OPE.20223009.1058http://dx.doi.org/10.37188/OPE.20223009.1058
WANG G, WEI W N, DAI J, et al. Linear yaw compound piezoelectric micro-motion platform[J]. Opt. Precision Eng., 2022, 30(9):1058-1070.(in Chinese). doi: 10.37188/OPE.20223009.1058http://dx.doi.org/10.37188/OPE.20223009.1058
时运来, 娄成树, 张军, 等. 黏滑驱动式小型精密运动平台[J]. 光学 精密工程, 2018, 26(5):1124-1132. doi: 10.3788/ope.20182605.1124http://dx.doi.org/10.3788/ope.20182605.1124
SHI Y L, LOU CH SH, ZHANG J, et al. Small precision motion platform based on stick-slip driving principle[J]. Opt. Precision Eng., 2018, 26(5):1124-1132.(in Chinese). doi: 10.3788/ope.20182605.1124http://dx.doi.org/10.3788/ope.20182605.1124
徐斯强, 朱晓博, 刘品宽. 粘滑式压电驱动平台的复合控制[J]. 光学 精密工程, 2019, 27(12): 2571-2580. doi: 10.3788/ope.20192712.2571http://dx.doi.org/10.3788/ope.20192712.2571
XU S Q, ZHU X B, LIU P K. Composite control of piezo-actuated stick-slip devices[J]. Opt. Precision Eng., 2019, 27(12): 2571-2580.(in Chinese). doi: 10.3788/ope.20192712.2571http://dx.doi.org/10.3788/ope.20192712.2571
LI J P, CAI J J, WAN N, et al. A novel bionic piezoelectric actuator based on the walrus motion[J]. Journal of Bionic Engineering, 2021, 18(5): 1117-1125. doi: 10.1007/s42235-021-00081-0http://dx.doi.org/10.1007/s42235-021-00081-0
CHENG T H, LU X H, ZHAO H W, et al. Performance improvement of smooth impact drive mechanism at low voltage utilizing ultrasonic friction reduction[J]. Review of Scientific Instruments, 2016, 87(8): 085007. doi: 10.1063/1.4960392http://dx.doi.org/10.1063/1.4960392
DING ZH CH, DONG J SH, ZHOU X Q, et al. Achieving smooth motion of stick-slip piezoelectric actuator by means of alternate stepping[J]. Mechanical Systems and Signal Processing, 2022, 181: 109494. doi: 10.1016/j.ymssp.2022.109494http://dx.doi.org/10.1016/j.ymssp.2022.109494
TIAN Y L, HUO ZH C, WANG F J, et al. A novel friction-actuated 2-DOF high precision positioning stage with hybrid decoupling structure[J]. Mechanism and Machine Theory, 2022, 167: 104511. doi: 10.1016/j.mechmachtheory.2021.104511http://dx.doi.org/10.1016/j.mechmachtheory.2021.104511
LI J P, ZHOU X Q, ZHAO H W, et al. Development of a novel parasitic-type piezoelectric actuator[J]. ASME Transactions on Mechatronics, 2017, 22(1): 541-550. doi: 10.1109/tmech.2016.2604242http://dx.doi.org/10.1109/tmech.2016.2604242
LU X H, GAO Q, LI Y K, et al. A linear piezoelectric stick-slip actuator via triangular displacement amplification mechanism[J]. IEEE Access, 2020, 8: 6515-6522. doi: 10.1109/access.2019.2963680http://dx.doi.org/10.1109/access.2019.2963680
JIN T, LUO S W, LE Y F, et al. Design and analysis of a low crosstalk error nested structure two-dimensional micro-displacement stage[J]. Advances in Mechanical Engineering, 2021, 13(4): 168781402110140. doi: 10.1177/16878140211014061http://dx.doi.org/10.1177/16878140211014061
吴高华, 杨依领, 李国平, 等. 具有高位移增幅特性的柔顺并联式x-y-θ微动平台[J]. 机器人, 2020, 42(1): 1-9. doi: 10.13973/j.cnki.robot.190044http://dx.doi.org/10.13973/j.cnki.robot.190044
WU G H, YANG Y L, LI G P, et al. A parallel compliant x-y-θ micro-stage with the characteristic of high displacement magnification[J]. Robot, 2020, 42(1): 1-9.(in Chinese). doi: 10.13973/j.cnki.robot.190044http://dx.doi.org/10.13973/j.cnki.robot.190044
WANG F J, HUO Z C, LIANG C M, et al. A novel actuator-internal micro/nano positioning stage with an arch-shape bridge-type amplifier[J]. IEEE Transactions on Industrial Electronics, 2019, 66(12): 9161-9172. doi: 10.1109/tie.2018.2885716http://dx.doi.org/10.1109/tie.2018.2885716
LIU Y W, XU ZH, LI X, et al. A high-performance stick-slip piezoelectric actuator achieved by using the double-stator cooperative motion mode (DCMM)[J]. Mechanical Systems and Signal Processing, 2022, 172: 108999. doi: 10.1016/j.ymssp.2022.108999http://dx.doi.org/10.1016/j.ymssp.2022.108999
PINSKIER J, SHIRINZADEH B, AL-JODAH A. Design and evaluation of a dual-stage, compensated stick-slip actuator for long-range, precision compliant mechanisms[J]. Sensors and Actuators A: Physical, 2021, 331: 113007. doi: 10.1016/j.sna.2021.113007http://dx.doi.org/10.1016/j.sna.2021.113007
ZHANG Y K, PENG Y X, SUN Z X, et al. A novel stick-slip piezoelectric actuator based on a triangular compliant driving mechanism[J]. IEEE Transactions on Industrial Electronics, 2019, 66(7): 5374-5382. doi: 10.1109/tie.2018.2868274http://dx.doi.org/10.1109/tie.2018.2868274
闫旭. 7075铝合金热成形摩擦行为实验及有限元模拟研究[D]. 长春: 吉林大学, 2021.
YAN X. Experimental and Finite Element Simulation Study on Friction Behavior of 7075 Aluminum Alloy during Hot Forming[D]. Changchun: Jilin University, 2021. (in Chinese)
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构