浙江师范大学 精密机械与智能结构研究所,浙江 金华 321004
[ "王淑云(1966-),女,吉林长岭人,教授,1988年、2001年和2008年于吉林大学分别获得学士、硕士和博士学位,主要从事工程问题的理论建模、仿真分析及优化等方面的研究。E-mail:jutwsy@163.com" ]
[ "张忠华(1980-),吉林松原人,男,博士,教授,硕士生导师,2009年于大连理工大学获得博士学位,主要研究方向为能量收集技术、压电传感器与驱动器技术、智能结构与系统。E-mail:zhangzhh@zjnu.edu.cn" ]
扫 描 看 全 文
王淑云,杜洁雅,黄喆人等.磁耦合式可调频压电振动俘能器[J].光学精密工程,2024,32(01):73-83.
WANG Shuyun,DU Jieya,HUANG Zheren,et al.Magnetically-coupled tunable piezoelectric vibration energy harvester[J].Optics and Precision Engineering,2024,32(01):73-83.
王淑云,杜洁雅,黄喆人等.磁耦合式可调频压电振动俘能器[J].光学精密工程,2024,32(01):73-83. DOI: 10.37188/OPE.20243201.0073.
WANG Shuyun,DU Jieya,HUANG Zheren,et al.Magnetically-coupled tunable piezoelectric vibration energy harvester[J].Optics and Precision Engineering,2024,32(01):73-83. DOI: 10.37188/OPE.20243201.0073.
为提高压电振动俘能器的环境适应性,提出一种磁耦合式可调频压电振动俘能器,利用激励器上主动磁铁和组合换能器上被动磁铁间的耦合作用及横摆簧片实现压电振子的单向限幅激励。通过对俘能器及磁对的建模和仿真分析,获得了俘能器结构参数对俘能器输出性能的影响,在此基础上制作俘能器样机并进行实验研究,获得了俘能器纵摆质量,m,1,、横摆质量,m,2,、横向距离,L,x,、纵向距离,L,y,、竖向距离,L,z,及负载电阻对俘能器输出性能的影响规律。结果表明:存在两阶谐振频率,f,1,和,f,2,使输出电压出现峰值,U,n1,和,U,n2,,调节,m,1,,,m,2,,,L,x,,,L,y,及,L,z,会影响,f,1,,,f,2,,,U,n1,及,U,n2,;其他条件一定时,存在最佳负载电阻2 200 kΩ使输出功率达到0.122 mW。通过选择合适的结构参数能够提升俘能器的有效频带和输出电压,对增强压电振动俘能器的可靠性和频率适应性具有一定的参考价值。
To improve the environmental adaptability of a piezoelectric vibration energy harvester, a magnetically-coupled tunable piezoelectric vibration energy harvester (PVEH) is proposed. The coupling action between the active magnet on the actuator and the passive magnet on the combined transducer and transversal spring was used to realize the unidirectional limiting excitation of the piezoelectric vibrator. Through modeling and simulation analyses of the energy harvester and magnetic pair, influences of the structural parameters of the energy harvester on the corresponding output performance could be determined. On this basis, the energy harvester prototype was developed by selecting a better magnet diameter via experimental research. The influence laws of the energy harvester's longitudinal mass ,m,1,, transversal mass ,m,2,, transversal magnet spacing ,L,x,, longitudinal magnet spacing ,L,y,, vertical magnet spacing ,L,z,, and load resistance on the output performance were also obtained. The results show that two order resonant frequencies ,f,1, and ,f,2, cause the output voltage to peak to ,U,n1, and ,U,n2,, respectively. Moreover, adjusting ,m,1,, ,m,2,, ,L,x,, ,L,y,, and ,L,z, will affect ,f,1,, ,f,2,, ,U,n1,, and ,U,n2,. Therefore, the effective frequency band and output voltage of the energy harvester can be increased when appropriate structural parameters are selected for the energy harvester. When other conditions are given, there is an optimal load resistance of 2 200 kΩ that increases the output power to 0.122 mW. Therefore, the effective frequency band and output voltage of the energy harvester can be improved by selecting suitable structural parameters and distance between magnets. The results provide good reference value for enhancing the reliability and frequency adaptability of the PVEH.
压电可调频磁耦合组合换能器能量回收
piezoelectricadjustable frequencymagnetic couplingcombination transducerenergy recovery
WANG S, WANG C, GAO Z, et al. Design and performance of a cantilever piezoelectric power generation device for real-time road safety warnings[J]. Applied Energy, 2020, 276: 115512. doi: 10.1016/j.apenergy.2020.115512http://dx.doi.org/10.1016/j.apenergy.2020.115512
YANG Z, ZHOU S, ZU J, et al. High-performance piezoelectric energy harvesters and their applications[J]. Joule, 2018, 2(4): 642-697. doi: 10.1016/j.joule.2018.03.011http://dx.doi.org/10.1016/j.joule.2018.03.011
KEMPITIYA A, BORCA-TASCIUC D A, HELLA M M. Low-power ASIC for microwatt electrostatic energy harvesters[J]. IEEE Transactions on Industrial Electronics, 2013, 60(12): 5639-5647. doi: 10.1109/tie.2012.2230891http://dx.doi.org/10.1109/tie.2012.2230891
TOMMASINO D, MORO F, BERNAY B, et al. Vibration energy harvesting by means of piezoelectric patches: application to aircrafts[J]. Sensors, 2022, 22(1): 363. doi: 10.3390/s22010363http://dx.doi.org/10.3390/s22010363
马天兵, 陈南南, 吴晓东, 等. Z型压电振动能量收集装置[J]. 光学 精密工程, 2019, 27(9):1968-1980. doi: 10.3788/ope.20192709.1968http://dx.doi.org/10.3788/ope.20192709.1968
MA T B, CHEN N N, WU X D, et al. Z-type piezoelectric vibration energy harvesting device[J]. Opt. Precision Eng., 2019, 27(9):1968-1980. (in Chinese). doi: 10.3788/ope.20192709.1968http://dx.doi.org/10.3788/ope.20192709.1968
XU Q Y, GAO A R, LI Y G, et al. Design and optimization of piezoelectric cantilever beam vibration energy harvester[J]. Micromachines, 2022, 13(5): 675. doi: 10.3390/mi13050675http://dx.doi.org/10.3390/mi13050675
王淑云, 朱雅娜, 阚君武, 等. 间接激励压电发电机的建模仿真与试验研究[J]. 振动工程学报, 2021, 34(1):127-133. doi: 10.16385/j.cnki.issn.1004-4523.2021.01.014http://dx.doi.org/10.16385/j.cnki.issn.1004-4523.2021.01.014
WANG SH Y, ZHU Y N, KAN J W, et al. Performance analysis and test of a piezoelectric energy harvester based on indirect excitation[J]. Journal of Vibration Engineering, 2021, 34(1):127-133. (in Chinese). doi: 10.16385/j.cnki.issn.1004-4523.2021.01.014http://dx.doi.org/10.16385/j.cnki.issn.1004-4523.2021.01.014
ZHANG Z, HE L P, HU R H, et al. A compound cantilever beam piezoelectric harvester based on wind energy excitation[J]. The Review of Scientific Instruments, 2022, 93(8): 085003. doi: 10.1063/5.0093123http://dx.doi.org/10.1063/5.0093123
吴义鹏, 周圣鹏, 裘进浩, 等. 用于超低频振动能收集的压电弹簧摆结构设计与实现[J]. 振动工程学报, 2019, 32(5):750-756.
WU Y P, ZHOU SH P, QIU J H, et al. Design and implementation of a piezoelectric spring pendulum structure applied in ultra-low frequency vibration energy harvesting[J]. Journal of Vibration Engineering, 2019, 32(5):750-756. (in Chinese)
SOMKUWAR R, CHANDWANI J, DESHMUKH R. Bandwidth widening of piezoelectric energy harvester by free moving cylinders in liquid medium[J].Microsystem Technologies, 2021, 27(5): 1959-1970. doi: 10.1007/s00542-020-04999-zhttp://dx.doi.org/10.1007/s00542-020-04999-z
LIN W, XU Y F, WANG S J, et al. A nonlinear magnetic and torsional spring coupling piezoelectric energy harvester with internal resonance[J]. Smart Materials and Structures, 2022, 31(11):115007. doi: 10.1088/1361-665x/ac9657http://dx.doi.org/10.1088/1361-665x/ac9657
SU W J. Impact-driven broadband piezoelectric energy harvesting using a two-degrees-of-freedom structure[J].Microsystem Technologies, 2020, 26(6): 1915-1924. doi: 10.1007/s00542-019-04744-1http://dx.doi.org/10.1007/s00542-019-04744-1
WANG J-X, LI J-C, SU W-B, et al. A multi-folded-beam piezoelectric energy harvester for wideband energy harvesting under ultra-low harmonic acceleration[J]. Energy Reports, 2022, 8: 6521-6529. doi: 10.1016/j.egyr.2022.04.077http://dx.doi.org/10.1016/j.egyr.2022.04.077
杜小振, 张龙波, 于红. 磁力调频压电电磁复合发电设计与实验[J]. 光学 精密工程, 2016, 24(11):2753-2760. doi: 10.3788/ope.20162411.2753http://dx.doi.org/10.3788/ope.20162411.2753
DU X ZH, ZHANG L B, YU H. Design and experiment of piezoelectric electromagnetic hybrid broadband generator with magnetic force tuning[J]. Opt. Precision Eng., 2016, 24(11):2753-2760.(in Chinese). doi: 10.3788/ope.20162411.2753http://dx.doi.org/10.3788/ope.20162411.2753
YANG W, TOWFIGHIAN S. A hybrid nonlinear vibration energy harvester[J]. Mechanical Systems and Signal Processing, 2017, 90: 317-333. doi: 10.1016/j.ymssp.2016.12.032http://dx.doi.org/10.1016/j.ymssp.2016.12.032
YANG W, TOWFIGHIAN S. Bistable energy harvester using easy snap-through performance to increase output power[J]. Energy, 2021, 226: 120414. doi: 10.1016/j.energy.2021.120414http://dx.doi.org/10.1016/j.energy.2021.120414
王淑云, 任泽峰, 阚君武, 等. 双磁耦合式压电振动俘能器的性能分析与试验[J]. 机械工程学报, 2022, 58(20): 150-157. doi: 10.3901/jme.2022.20.150http://dx.doi.org/10.3901/jme.2022.20.150
WANG SH Y, REN Z F, KAN J W, et al. Design, characterization and testing of magnetically coupled piezoelectric vibration energy harvester using double magnets[J]. Journal of Mechanical Engineering, 2022, 58(20): 150-157.(in Chinese). doi: 10.3901/jme.2022.20.150http://dx.doi.org/10.3901/jme.2022.20.150
YANG W, TOWFIGHIAN S. A parametric resonator with low threshold excitation for vibration energy harvesting[J]. Journal of Sound and Vibration, 2019, 446: 129-143. doi: 10.1016/j.jsv.2019.01.038http://dx.doi.org/10.1016/j.jsv.2019.01.038
KAN J W, FU J W, WANG S Y, et al. Study on a piezo-disk energy harvester excited by rotary magnets[J]. Energy, 2017, 122: 62-69. doi: 10.1016/j.energy.2017.01.059http://dx.doi.org/10.1016/j.energy.2017.01.059
WU J G, CHEN X, CHU Z Q, et al. A barbell-shaped high-temperature piezoelectric vibration energy harvester based on BiScO3-PbTiO3 ceramic[J]. Applied Physics Letters, 2016, 109(17):173901. doi: 10.1063/1.4966125http://dx.doi.org/10.1063/1.4966125
TANG G, XIE G Y, HUANG B, et al. Two-degree-of-freedom piezoelectric MEMS energy harvester based on bulk PZT film[J]. Sensors and Materials, 2019, 31(12): 4079. doi: 10.18494/sam.2019.2543http://dx.doi.org/10.18494/sam.2019.2543
YAO M H, LIU P F, WANG H B. Nonlinear dynamics and power generation on a new bistable piezoelectric-electromagnetic energy harvester[J]. Complexity, 2020, 2020: 1-29. doi: 10.1155/2020/5681703http://dx.doi.org/10.1155/2020/5681703
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构