1.大连理工大学 高性能精密制造全国重点实验室,辽宁 大连 116024
2.华侨大学 制造工程研究院,福建 厦门 361021
[ "敖萌灿(1999-),男,重庆人,硕士研究生,2021年于大连理工大学获得学士学位,主要研究方向为硬脆材料超精密磨削技术。E-mail: 32104027@mail.dlut.edu.cn" ]
[ "高 尚(1982-),男,辽宁沈阳人,博士,副教授,博士生导师,2005年、2007年、2014年于大连理工大学分别获得学士、硕士和博士学位,主要研究方向为难加工材料精密与超精密加工技术、半导体制造技术与设备。E-mail: gaoshang@dlut.edu.cn" ]
扫 描 看 全 文
敖萌灿,黄金星,曾毓贤等.超精密磨削YAG晶体的脆塑转变临界深度预测[J].光学精密工程,2024,32(01):84-94.
AO Mengcan,HUANG Jinxing,ZENG Yuxian,et al.Prediction of brittle-to-ductile transition depth in ultra-precision grinding YAG crystals[J].Optics and Precision Engineering,2024,32(01):84-94.
敖萌灿,黄金星,曾毓贤等.超精密磨削YAG晶体的脆塑转变临界深度预测[J].光学精密工程,2024,32(01):84-94. DOI: 10.37188/OPE.20243201.0084.
AO Mengcan,HUANG Jinxing,ZENG Yuxian,et al.Prediction of brittle-to-ductile transition depth in ultra-precision grinding YAG crystals[J].Optics and Precision Engineering,2024,32(01):84-94. DOI: 10.37188/OPE.20243201.0084.
钇铝石榴石(YAG)晶体是制造固体激光器的重要材料,超精密磨削是加工YAG晶体等硬脆材料零件的重要方法,研究硬脆材料加工表面的微观变形、脆塑转变机理对超精密磨削加工具有重要的指导作用。为了实现YAG晶体低损伤磨削加工,获得高质量表面,基于弹塑性接触理论和压痕断裂力学,通过分析单磨粒划擦作用下材料表面的变形过程,考虑材料的弹性回复、微观下力学性能的尺寸效应,建立了脆塑转变临界深度的预测模型,并计算得到YAG晶体的脆塑转变临界深度为66.7 nm。在此基础上,通过不同粒度砂轮超精密磨削YAG晶体试验对建立的脆塑转变临界深度预测模型进行验证,并计算不同粒度砂轮在相应工艺条件下的磨粒切深。结果表明,磨粒切深高于脆塑转变临界深度时,YAG晶体磨削表面材料以脆性方式被去除,磨削表面损伤严重;磨粒切深低于脆塑转变临界深度时,磨削表面材料以塑性方式被去除,能够获得高质量磨削表面,加工表面粗糙度达到1 nm。建立的脆塑转变临界深度预测模型能够为YAG晶体的低损伤超精密磨削加工提供理论指导。
Yttrium aluminum garnet (YAG) crystals are widely used for manufacturing solid-state lasers, and ultraprecision grinding is critical for machining hard and brittle material parts, such as YAG crystals. The investigation of microdeformation and brittle-to-ductile transition mechanisms of hard and brittle material-machined surfaces is necessary for ultraprecision grinding. Based on the elastic-plastic contact theory and indentation fracture mechanics, a model for predicting the critical depth of brittle-to-ductile transitions was established to achieve low-damage grinding of YAG crystals and obtain high-quality surfaces. The deformation process of the material surface under the action of a single abrasive scratch was analyzed, considering the elastic recovery of the material and the size effect of micromechanical properties. The critical depth of the brittle-to-ductile transition of the YAG crystal is 66.7 nm. The proposed prediction model of the critical depth of the brittle-to-ductile transition was verified by ultraprecision grinding of YAG crystals with grinding wheels of different grain sizes. In addition, the grit-cutting depths of different grain-size grinding wheels under the corresponding process conditions were calculated. The results show that when the grit-cutting depth is more extended than the critical depth of the brittle-to-ductile transition, the surface material of the YAG crystal is removed in a brittle manner, and the grinding surface is severely damaged. However, when the grit-cutting depth is less than the critical depth of the brittle-to-ductile transition, the grinding surface material is removed in a ductile manner, high-quality grinding surface can be obtained, and the machined surface roughness can reach 1 nm. The proposed model for predicting the critical depth of the brittle-to-ductile transition provides theoretical guidance for low-damage ultraprecision grinding of YAG crystals.
超精密磨削YAG晶体纳米压痕纳米划痕脆塑转变
YAG crystalnano-indentationnano-scratchbrittle-to-ductile transitionultra-precision grinding
MILISAVLJEVIC I, ZHANG G, WU Y. Solid-state single-crystal growth of YAG and Nd∶YAG by spark plasma sintering[J]. Journal of Materials Science & Technology, 2022, 106: 118-127. doi: 10.1016/j.jmst.2021.08.014http://dx.doi.org/10.1016/j.jmst.2021.08.014
FENG Z, MA C Y, ZHANG C G, et al. Transparent YAG ceramic/sapphire composite fabricated by pressureless direct thermal diffusion bonding[J]. Journal of the European Ceramic Society, 2021, 41(15): 7845-7851. doi: 10.1016/j.jeurceramsoc.2021.08.020http://dx.doi.org/10.1016/j.jeurceramsoc.2021.08.020
NEGRI J R, PIRZIO F, AGNESI A. Jitter investigation of narrow-bandwidth passively Q-switched Nd: YAG unidirectional ring laser[J]. Optics Letters, 2019, 44(12): 3094-3097. doi: 10.1364/ol.44.003094http://dx.doi.org/10.1364/ol.44.003094
BORDATCHEV E V, HAFIZ A M K, TUTUNEA-FATAN O R. Performance of laser polishing in finishing of metallic surfaces[J].The International Journal of Advanced Manufacturing Technology, 2014, 73(1/2/3/4): 35-52. doi: 10.1007/s00170-014-5761-3http://dx.doi.org/10.1007/s00170-014-5761-3
SACHDEVA A, PICKERING E M, LEE H J. From electrocautery, balloon dilatation, neodymium-doped: yttrium-aluminum-garnet (Nd∶YAG) laser to argon plasma coagulation and cryotherapy[J]. Journal of Thoracic Disease, 2015, 7(Suppl 4): S363-S379.
MINCUZZI G, PALMA A L, DI CARLO A, et al. Laser processing in the manufacture of dye-sensitized and perovskite solar cell technologies[J]. ChemElectroChem, 2016, 3(1): 9-30. doi: 10.1002/celc.201500389http://dx.doi.org/10.1002/celc.201500389
位超杰, 闫仁鹏, 李旭东, 等. 三维成像激光雷达应用的亚纳秒激光器研究进展[J]. 光学 精密工程, 2021, 29(6):1270-1280. doi: 10.37188/ope.20212906.1270http://dx.doi.org/10.37188/ope.20212906.1270
WEI CH J, YAN R P, LI X D, et al. Research progress of sub-nanosecond lasers for 3D imaging lidar[J]. Opt. Precision Eng., 2021, 29(6):1270-1280.(in Chinese). doi: 10.37188/ope.20212906.1270http://dx.doi.org/10.37188/ope.20212906.1270
ROSS D, YAMAGUCHI H. Nanometer-scale characteristics of polycrystalline YAG ceramic polishing[J]. CIRP Annals, 2018, 67(1): 349-352. doi: 10.1016/j.cirp.2018.04.090http://dx.doi.org/10.1016/j.cirp.2018.04.090
MCKAY J, BAI T Y, GOORSKY M S. Chemical mechanical polishing and direct bonding of YAG[J]. ECS Transactions, 2018, 86(5): 217-222. doi: 10.1149/08605.0217ecsthttp://dx.doi.org/10.1149/08605.0217ecst
PEI Z J, FISHER G R, LIU J. Grinding of silicon wafers: a review from historical perspectives[J]. International Journal of Machine Tools and Manufacture, 2008, 48(12/13): 1297-1307. doi: 10.1016/j.ijmachtools.2008.05.009http://dx.doi.org/10.1016/j.ijmachtools.2008.05.009
刘宁, 朱永伟, 李学, 等. 硬脆材料平面研抛的材料去除机理研究进展[J]. 材料导报, 2022, 36(7):80-91. doi: 10.11896/cldb.21060121http://dx.doi.org/10.11896/cldb.21060121
LIU N, ZHU Y W, LI X, et al. Research progress of material removal mechanism in plane lapping and polishing of hard-brittle materials[J]. Materials Review, 2022, 36(7):80-91.(in Chinese). doi: 10.11896/cldb.21060121http://dx.doi.org/10.11896/cldb.21060121
袁巨龙, 王志伟, 文东辉, 等. 超精密加工现状综述[J]. 机械工程学报, 2007, 43(1):35-48. doi: 10.3321/j.issn:0577-6686.2007.01.006http://dx.doi.org/10.3321/j.issn:0577-6686.2007.01.006
YUAN J L, WANG ZH W, WEN D H, et al. Review of the current situation of ultra-precision machining[J]. Chinese Journal of Mechanical Engineering, 2007, 43(1):35-48.(in Chinese). doi: 10.3321/j.issn:0577-6686.2007.01.006http://dx.doi.org/10.3321/j.issn:0577-6686.2007.01.006
SUN J L, CHEN P, QIN F, et al. Modelling and experimental study of roughness in silicon wafer self-rotating grinding[J]. Precision Engineering, 2018, 51: 625-637. doi: 10.1016/j.precisioneng.2017.11.003http://dx.doi.org/10.1016/j.precisioneng.2017.11.003
ZHANG C Y, GUO B, ZHAO Q L, et al. Ultra-precision grinding of AlON ceramics: surface finish and mechanisms[J]. Journal of the European Ceramic Society, 2019, 39(13): 3668-3676. doi: 10.1016/j.jeurceramsoc.2019.05.005http://dx.doi.org/10.1016/j.jeurceramsoc.2019.05.005
JIANG B C, ZHAO D W, LIU Y H, et al. Surface figure control in fine rotation grinding process of thick silicon mirror[J].The International Journal of Advanced Manufacturing Technology, 2018, 98(1/2/3/4): 771-779. doi: 10.1007/s00170-018-2328-8http://dx.doi.org/10.1007/s00170-018-2328-8
高尚, 李天润, 郎鸿业, 等. 工件旋转法磨削硅片的亚表面损伤深度预测[J]. 光学 精密工程, 2022, 30(17):2077-2087. doi: 10.37188/OPE.20223017.2077http://dx.doi.org/10.37188/OPE.20223017.2077
GAO SH, LI T R, LANG H Y, et al. Prediction for subsurface damage depth of silicon wafers in workpiece rotational grinding[J]. Opt. Precision Eng., 2022, 30(17):2077-2087.(in Chinese). doi: 10.37188/OPE.20223017.2077http://dx.doi.org/10.37188/OPE.20223017.2077
李琛. 稀土氧化物激光晶体超精密磨削机理及工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
LI C. Study on Ultra-precision Grinding Mechanism and Technology of Rare Earth Oxide Laser Crystal[D]. Harbin: Harbin Institute of Technology, 2019. (in Chinese)
LI C, LI X L, WU Y Q, et al. Deformation mechanism and force modelling of the grinding of YAG single crystals[J]. International Journal of Machine Tools and Manufacture, 2019, 143: 23-37. doi: 10.1016/j.ijmachtools.2019.05.003http://dx.doi.org/10.1016/j.ijmachtools.2019.05.003
BIFANO T G, DOW T A, SCATTERGOOD R O. Ductile-regime grinding: a new technology for machining brittle materials[J]. Journal of Engineering for Industry, 1991, 113(2): 184-189. doi: 10.1115/1.2899676http://dx.doi.org/10.1115/1.2899676
HUANG H, LAWN B R, COOK R F, et al. Critique of materials-based models of ductile machining in brittle solids[J]. Journal of the American Ceramic Society, 2020, 103(11): 6096-6100. doi: 10.1111/jace.17344http://dx.doi.org/10.1111/jace.17344
ARIF M, ZHANG X Q, RAHMAN M, et al. A predictive model of the critical undeformed chip thickness for ductile-brittle transition in nano-machining of brittle materials[J]. International Journal of Machine Tools and Manufacture, 2013, 64: 114-122. doi: 10.1016/j.ijmachtools.2012.08.005http://dx.doi.org/10.1016/j.ijmachtools.2012.08.005
VENKATACHALAM S, LI X, LIANG S Y.Predictive modeling of transition undeformed chip thickness in ductile-regime micro-machining of single crystal brittle materials[J]. Journal of Materials Processing Technology, 2009, 209(7): 3306-3319. doi: 10.1016/j.jmatprotec.2008.07.036http://dx.doi.org/10.1016/j.jmatprotec.2008.07.036
LI H G, GAO S, KANG R K, et al. The Deformation Pattern of Aluminum Nitride Ceramics Under Nanoscratching[M]. Proceedings of the 7th International Conference on Nanomanufacturing (nanoMan2021). Singapore: Springer Singapore, 2022: 285-297. doi: 10.1007/978-981-19-1918-3_32http://dx.doi.org/10.1007/978-981-19-1918-3_32
JIANG W, CHENG X W, CAI H, et al. The response of yttrium aluminum garnet (YAG) grains and grain boundaries to nanoindentation[J]. Journal of Materials Science. 2018, 53(24): 16198-16206. doi: 10.1007/s10853-018-2782-6http://dx.doi.org/10.1007/s10853-018-2782-6
LI C, ZHANG F H, WANG X, et al. Investigation on surface/subsurface deformation mechanism and mechanical properties of GGG single crystal induced by nanoindentation[J]. Applied Optics, 2018, 57(14): 3661-3668. doi: 10.1364/ao.57.003661http://dx.doi.org/10.1364/ao.57.003661
WANG H M, HUANG Z Y, LU Z W, et al. Determination of the elastic and plastic deformation behaviors of Yb: Y3Al5O12 transparent ceramic by nanoindentation[J]. Journal of Alloys and Compounds, 2016, 682: 35-41. doi: 10.1016/j.jallcom.2016.04.241http://dx.doi.org/10.1016/j.jallcom.2016.04.241
HUANG Y, ZHANG F, HWANG K C, et al. A model of size effects in nano-indentation[J]. Journal of the Mechanics and Physics of Solids, 2006, 54(8): 1668-1686. doi: 10.1016/j.jmps.2006.02.002http://dx.doi.org/10.1016/j.jmps.2006.02.002
PHARR G M, HERBERT E G, GAO Y F. The indentation size effect: a critical examination of experimental observations and mechanistic interpretations[J]. Annual Review of Materials Research, 2010, 40: 271-292. doi: 10.1146/annurev-matsci-070909-104456http://dx.doi.org/10.1146/annurev-matsci-070909-104456
LI C, ZHANG F H, PIAO Y C. Strain-rate dependence of surface/subsurface deformation mechanisms during nanoscratching tests of GGG single crystal[J]. Ceramics International, 2019, 45(12): 15015-15024. doi: 10.1016/j.ceramint.2019.04.238http://dx.doi.org/10.1016/j.ceramint.2019.04.238
GAO S, LI H G, KANG R K, et al. Effect of strain rate on the deformation characteristic of AlN ceramics under scratching[J]. Micromachines, 2021, 12(1): 77. doi: 10.3390/mi12010077http://dx.doi.org/10.3390/mi12010077
OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J].Journal of Materials Research, 1992, 7(6): 1564-1583. doi: 10.1557/jmr.1992.1564http://dx.doi.org/10.1557/jmr.1992.1564
PATHAK S, KALIDINDI S R. Spherical nanoindentation stress-strain curves[J]. Materials Science and Engineering, 2015, 91: 1-36. doi: 10.1016/j.mser.2015.02.001http://dx.doi.org/10.1016/j.mser.2015.02.001
LAWN B R, EVANS A G. A model for crack initiation in elastic/plastic indentation fields[J].Journal of Materials Science, 1977, 12(11): 2195-2199. doi: 10.1007/bf00552240http://dx.doi.org/10.1007/bf00552240
MAH T I, PARTHASARATHY T A. Effects of temperature, environment, and orientation on the fracture toughness of single-crystal YAG[J]. Journal of the American Ceramic Society, 1997, 80(10): 2730-2734. doi: 10.1111/j.1151-2916.1997.tb03185.xhttp://dx.doi.org/10.1111/j.1151-2916.1997.tb03185.x
ZHANG Y, KANG R K, GAO S, et al. A new model of grit cutting depth in wafer rotational grinding considering the effect of the grinding wheel, workpiece characteristics, and grinding parameters[J]. Precision Engineering, 2021, 72: 461-468. doi: 10.1016/j.precisioneng.2021.06.007http://dx.doi.org/10.1016/j.precisioneng.2021.06.007
YANG M, LI C H, ZHANG Y B, et al. Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions[J]. International Journal of Machine Tools and Manufacture, 2017, 122: 55-65. doi: 10.1016/j.ijmachtools.2017.06.003http://dx.doi.org/10.1016/j.ijmachtools.2017.06.003
YIN L, VANCOILLE E Y J, RAMESH K, et al. Surface characterization of 6H-SiC (0001) substrates in indentation and abrasive machining[J]. International Journal of Machine Tools and Manufacture, 2004, 44(6): 607-615. doi: 10.1016/j.ijmachtools.2003.12.006http://dx.doi.org/10.1016/j.ijmachtools.2003.12.006
马廉洁, 巩亚东, 顾立晨, 等. 可加工微晶玻璃陶瓷磨削表面成形机制[J]. 机械工程学报, 2017, 53(15): 201-207. doi: 10.3901/jme.2017.15.201http://dx.doi.org/10.3901/jme.2017.15.201
MA L J, GONG Y D, GU L CH, et al. Mechanism of surface forming in grinding machinable glass ceramics[J]. Journal of Mechanical Engineering, 2017, 53(15): 201-207.(in Chinese). doi: 10.3901/jme.2017.15.201http://dx.doi.org/10.3901/jme.2017.15.201
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构