浏览全部资源
扫码关注微信
1.北京控制工程研究所,北京 100190
2.空间智能控制技术重点实验室,北京 100190
3.北京航空航天大学 仪器科学与光电工程学院,北京 100191
[ "王晓阳(1993-),男,山东聊城人,博士,工程师,2015年于华中科技大学获得学士学位,2022年于北京航空航天大学获得博士学位,主要从事光子带隙光纤等新型光纤散射理论及光子带隙光纤传感技术研究。E-mail:wxybuaa2021@163.com" ]
[ "滕 飞(1988-),男,辽宁沈阳人,博士,高级工程师,2011年和2017年于北京航空航天大学分别获得学士、博士学位,主要从事光子带隙光纤理论及基于光子带隙光纤的传感器技术等方面的研究。E-mail:tengfei0337@126.com" ]
纸质出版日期:2024-03-25,
收稿日期:2023-09-06,
修回日期:2023-10-10,
移动端阅览
王晓阳,滕飞,徐小斌等.光子带隙光纤背向散射次波建模及实验验证[J].光学精密工程,2024,32(06):765-773.
WANG Xiaoyang,TENG fei,XU Xiaobin,et al.Modeling and experimental verification of backscatter secondary wave of photonic bandgap fiber[J].Optics and Precision Engineering,2024,32(06):765-773.
王晓阳,滕飞,徐小斌等.光子带隙光纤背向散射次波建模及实验验证[J].光学精密工程,2024,32(06):765-773. DOI: 10.37188/OPE.20243206.0765.
WANG Xiaoyang,TENG fei,XU Xiaobin,et al.Modeling and experimental verification of backscatter secondary wave of photonic bandgap fiber[J].Optics and Precision Engineering,2024,32(06):765-773. DOI: 10.37188/OPE.20243206.0765.
光子带隙光纤有着独特的结构形式、传输介质和导光机制,这使其具有传统光纤无法比拟的优点,是未来光纤陀螺的理想选择。但光子带隙光纤粗糙的纤芯内壁导致其产生强烈的背向散射次波,会使光子带隙光纤陀螺产生额外的非互易误差。为了定量分析光子带隙光纤背向散射次波强度大小,论文基于电偶极子辐射理论建立了一种简单的光子带隙光纤背向散射次波理论模型。通过聚焦离子束微纳加工法和原子力显微镜测量得到了准确的纤芯内壁表面形貌功率谱密度,进而计算得到HC-1550-02型光子带隙光纤背向散射系数理论值为2.61×10
-
9
/mm。通过光频域背向反射散射仪得到HC-1550-02型光子带隙光纤背向散射系数测量值为~1.82×10
-
9
/mm,初步验证了背向散射次波模型的正确性,为背向散射次波抑制技术研究奠定了基础。
Photonic bandgap fibers (PBFs) have advantages that traditional fiber cannot compare for its’ unique structural form, transmission medium, and light guide mechanism. PBFs is an ideal choice for fiber-optic gyroscope (FOG) in the future. However, the rough inner surface of PBFs’ core result in strong backscatter secondary wave, which results in additional non-reciprocal errors of photonic bandgap fiber-optic gyroscope (PBFOG). In order to quantitatively analyze the intensity of backscatter secondary wave of PBFs, a simple backscatter secondary wave model of PBFs was established based on electric dipole radiation theory. Power spectral density of inner surface of PBFs’ core was obtained by focused ion beam processing and atomic force microscopy, and the theoretical backscattering coefficient of PBF (HC-1550-02) can be calculated as 2.61×10
-9
/mm. The measured backscattering coefficient of PBF (HC-1550-02) is ~1.82×10
-9
/mm by optical frequency domain back-reflection scatter instrument, which primarily verify the correctness of backscatter secondary wave model, it lays a foundation for the research of suppression technology of backscatter secondary wave.
光子带隙光纤背向散射次波功率谱密度
photonic bandgap fiberbackscatter secondary wavepower spectral density
沈威, 徐许, 高宏伟, 等. 氮化镓基异质结构光子晶体微腔特性研究[J]. 光学 精密工程, 2022, 30(24): 3097-3104. doi: 10.37188/ope.20223024.3097http://dx.doi.org/10.37188/ope.20223024.3097
SHEN W, XU X, GAO H W, et al. Study on the characteristics of Gallium Nitride based hetero-structure photonic crystal micro-cavity[J]. Opt. Precision Eng., 2022, 30(24): 3097-3104.(in Chinese). doi: 10.37188/ope.20223024.3097http://dx.doi.org/10.37188/ope.20223024.3097
王亚捷, 侯尚林, 雷景丽. C+L波段低损耗色散补偿19芯光子晶体光纤设计[J]. 光学 精密工程, 2022, 30(22): 2860-2868. doi: 10.37188/ope.20223022.2860http://dx.doi.org/10.37188/ope.20223022.2860
WANG Y J, HOU S L, LEI J L. Design of 19-core photonic crystal fiber with low loss dispersion compensation in C+L band[J]. Opt. Precision Eng., 2022, 30(22): 2860-2868.(in Chinese). doi: 10.37188/ope.20223022.2860http://dx.doi.org/10.37188/ope.20223022.2860
DIGONNET M J F, KIM H K, KINO G S, et al. Understanding air-core photonic-bandgap fibers: analogy to conventional fibers[J]. Journal of Lightwave Technology, 2005, 23(12): 4169-4177. doi: 10.1109/jlt.2005.859406http://dx.doi.org/10.1109/jlt.2005.859406
HANSEN TP, BROENG J, BJARKLEV AO. Macrobending loss in air-guiding photonic crystal fibres[C]. 29th European Conference on Optical Communication, 2003: 484-485.
XU X B, ZHANG Z C, ZHANG Z H, et al. Investigation of residual core ellipticity induced nonreciprocity in air-core photonic bandgap fiber optical gyroscope[J]. Optics Express, 2014, 22(22): 27228-27235. doi: 10.1364/oe.22.027228http://dx.doi.org/10.1364/oe.22.027228
刘旭, 刘波, 饶云江. 基于单光子探测的光子计数光时域反射仪研究进展[J]. 光学 精密工程, 2023, 31(2): 168-182. doi: 10.37188/OPE.20233102.0168http://dx.doi.org/10.37188/OPE.20233102.0168
LIU X, LIU B, RAO Y J. Research progress of photon counting optical time domain reflectometry based on single photon detection[J]. Opt. Precision Eng., 2023, 31(2): 168-182.(in Chinese). doi: 10.37188/OPE.20233102.0168http://dx.doi.org/10.37188/OPE.20233102.0168
FOKOUA E N, POLETTI F, RICHARDSON D J. Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers[J]. Optics Express, 2012, 20(19): 20980-20991. doi: 10.1364/oe.20.020980http://dx.doi.org/10.1364/oe.20.020980
RODRIGUE N F E. Ultralow Loss and Wide Bandwidth Hollow-Core Photonic Bandgap Fibres for Telecom Applications[D]. Southampton, South East England, UK: University of Southampton, 2015
DANGUI V, DIGONNET M J F, KINO G S. Modeling of the propagation loss and backscattering in air-core photonic-bandgap fibers[J]. Journal of Lightwave Technology, 2009, 27(17): 3783-3789. doi: 10.1109/jlt.2008.2010876http://dx.doi.org/10.1109/jlt.2008.2010876
DANGUI V, DIGONNET M J F, KINO G S. A fast and accurate numerical tool to model the modal properties of photonic-bandgap fibers[J]. Optics Express, 2006, 14(7): 2979. doi: 10.1364/oe.14.002979http://dx.doi.org/10.1364/oe.14.002979
NUMKAM E, POLETTI F, RICHARDSON D J. Dipole radiation model for surface roughness scattering in Hollow-Core fibers[C]. OFC/NFOEC. Los Angeles, CA, USA. IEEE, 2012: 1-3. doi: 10.1364/nfoec.2012.jw2a.18http://dx.doi.org/10.1364/nfoec.2012.jw2a.18
JACKSON J D. Classical Electrodynamics[M]. Third edition. New York: Wiley, 1998. doi: 10.1119/1.19136http://dx.doi.org/10.1119/1.19136
JOANNOPOULOS J D. Photonic Crystals: Molding the Flow of Light[M]. Princeton: Princeton University Press, 2008. doi: 10.1515/9781400828241http://dx.doi.org/10.1515/9781400828241
DEBORD B, AMRANI F, VINCETTI L, et al. Hollow-core fiber technology: the rising of “gas photonics”[J]. Fibers, 2019, 7(2): 16. doi: 10.3390/fib7020016http://dx.doi.org/10.3390/fib7020016
ZAMANI AGHAIE K, DIGONNET M J F, FAN S H. Experimental assessment of the accuracy of an advanced photonic-bandgap-fiber model[J]. Journal of Lightwave Technology, 2013, 31(7): 1015-1022. doi: 10.1109/jlt.2013.2238608http://dx.doi.org/10.1109/jlt.2013.2238608
PEYRILLOUX A, FÉVRIER S, MARCOU J, et al. Comparison between the finite element method, the localized function method and a novel equivalent averaged index method for modelling photonic crystal fibres[J]. Journal of Optics A: Pure and Applied Optics, 2002, 4(3): 257-262. doi: 10.1088/1464-4258/4/3/307http://dx.doi.org/10.1088/1464-4258/4/3/307
CUCINOTTA A, SELLERI S, VINCETTI L, et al. Perturbation analysis of dispersion properties in photonic crystal fibers through the finite element method[J]. Journal of Lightwave Technology, 2002, 20(8): 1433-1442. doi: 10.1109/jlt.2002.800792http://dx.doi.org/10.1109/jlt.2002.800792
ROBERTS P, COUNY F, SABERT H, et al. Ultimate low loss of hollow-core photonic crystal fibres[J]. Optics Express, 2005, 13(1): 236-244. doi: 10.1364/opex.13.000236http://dx.doi.org/10.1364/opex.13.000236
JACKLE J, KAWASAKI K. Intrinsic roughness of glass surfaces[J]. Journal of Physics: Condensed Matter, 1995, 7(23): 4351-4358. doi: 10.1088/0953-8984/7/23/006http://dx.doi.org/10.1088/0953-8984/7/23/006
BRÜCKNER R. Properties and structure of vitreous silica. I[J]. Journal of Non-Crystalline Solids, 1970, 5(2): 123-175. doi: 10.1016/0022-3093(70)90190-0http://dx.doi.org/10.1016/0022-3093(70)90190-0
BANSAL N P, DOREMUS R H. Handbook of Glass Properties[M]. Orlando: Academic Press, 1986. doi: 10.1016/b978-0-08-052376-7.50017-5http://dx.doi.org/10.1016/b978-0-08-052376-7.50017-5
PHAN-HUY M C, MOISON J M, LEVENSON J A, et al. Surface roughness and light scattering in a small effective area microstructured fiber[J]. Journal of Lightwave Technology, 2009, 27(11): 1597-1604. doi: 10.1109/jlt.2009.2020608http://dx.doi.org/10.1109/jlt.2009.2020608
BENNINGSHOF O, NGUYEN D, DADEMA M, et al. Characterization of the channel walls roughness in photonic crystal fibers[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 66: 33-39. doi: 10.1016/j.physe.2014.09.019http://dx.doi.org/10.1016/j.physe.2014.09.019
陈建超. 超精密加工表面粗糙度测量方法对比及功率谱密度评价[D]. 哈尔滨: 哈尔滨工业大学, 2009.
CHEN J C. Comparison of Ultra-Precision Machined Surface Roughness Measurement Methods and Power Spectral Density Characterization[D].Harbin: Harbin Institute of Technology, 2009. (in Chinese)
姚天任, 江太辉著. 数字信号处理[M]. 2版. 武汉: 华中理工大学出版社, 2000.
YAO T R, JIANG T H. Digital Signal Processing[M]. Wuhan: Huazhong University of Science and Technology Press, 2000. (in Chinese)
AGHAIE KZ, DIGONNET MJ, FAN S. Modeling loss and backscattering in a photonic-bandgap fiber using strong perturbation[C]. Photonic and Phononic Properties of Engineered Nanostructures III, 2013 Feb 21, SPIE, 2013: 100-106. doi: 10.1117/12.2006446http://dx.doi.org/10.1117/12.2006446
0
浏览量
9
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构