浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2.中国科学院大学,北京 100039
3.吉林省智能波前传感与控制重点实验室,吉林 长春 130033
[ "安其昌(1988-),男,山西太原人,博士,副研究员,九三学社社员,中国科学院青年创新促进会会员。于2011在中国科学技术大学获得工学学士学位。于2018年在中国科学院大学获得博士学位,研究方向为大口径光机系统集成检测。E-mail:anjj@mail.ustc.edu.cn" ]
纸质出版日期:2024-03-25,
收稿日期:2023-03-28,
修回日期:2023-05-19,
移动端阅览
安其昌,吴小霞,唐境等.多镜面大视场主动光学望远镜调控方法[J].光学精密工程,2024,32(06):785-791.
AN Qichang,WU Xiaoxia,TANG Jing,et al.Control method of active optical telescope with multiple mirrors and large field of view[J].Optics and Precision Engineering,2024,32(06):785-791.
安其昌,吴小霞,唐境等.多镜面大视场主动光学望远镜调控方法[J].光学精密工程,2024,32(06):785-791. DOI: 10.37188/OPE.20243206.0785.
AN Qichang,WU Xiaoxia,TANG Jing,et al.Control method of active optical telescope with multiple mirrors and large field of view[J].Optics and Precision Engineering,2024,32(06):785-791. DOI: 10.37188/OPE.20243206.0785.
为了更好地实现多镜面大视场主动光学望远镜波前像差抑制、提升望远镜探测能力极限,本文基于望远镜视场边缘内置的错位型曲率传感器进行波前感知,并利用功率谱对波前感知结果进行分析,进而基于波前像差的空间频率特征进行调控。首先,基于复光场理论分析了非瞳面对系统波前调控的影响机理。其次,分析了本方法在多镜面大视场主动光学望远镜调控过程中的精度特性。再次,利用桌面实验对多镜面大视场主动光学望远镜调控的可行性进行了验证。最终,波前重建结果与理论波前相关性高于0.85。利用功率谱对各个视场的空间频率特性进行了分析,与单纯使用均方根对多镜面影响敏感度进行分析的方法相比,灵敏度提升了20%。
In order to achieve better wavefront aberration suppression and higher detection ability for active telescopes with multiple mirrors and large fields of view, this paper investigated wavefront sensing based on the single-shot curvature sensor at the edge of the telescope's field of view, and realize system control based on analysis of spatial characteristics using power spectrum. Firstly, based on the theory of complex light field, the basic principle and characteristic law of multi surface wavefront control were expressed. Secondly, the accuracy characteristics of this method in the control process of multi mirror large field of view active optical telescopes were analyzed. Thirdly, the feasibility of controlling was verified using desktop experiments. Finally, the correlation between the wavefront reconstruction results and the theoretical wavefront is higher than 0.85. Using power spectrum, the spatial frequency characteristics sensitivity of each field of view are improved by 20%, compared to root mean square.
曲率传感波前像差大视场主动光学大口径望远镜
curvature sensingwavefront aberrationactive optics with large field of viewlarge aperture telescope
ZHANG C, ZHANG G Y, LI J Z, et al. WISE green objects (WGOs): the massive star candidates in the whole galactic plane (∣b∣< 2°)[J]. The Astrophysical Journal Supplement Series, 2023, 264(1): 24. doi: 10.3847/1538-4365/aca325http://dx.doi.org/10.3847/1538-4365/aca325
GÄNSICKE B T, SCHREIBER M R, TOLOZA O, et al. Accretion of a giant planet onto a white dwarf star[J]. Nature, 2019, 576: 61-64. doi: 10.1038/s41586-019-1789-8http://dx.doi.org/10.1038/s41586-019-1789-8
YAN T S, SHI J R, WANG L, et al. Discovery of nine super Li-rich unevolved stars from the LAMOST survey[J]. The Astrophysical Journal Letters, 2022, 929(1): L14. doi: 10.3847/2041-8213/ac63a5http://dx.doi.org/10.3847/2041-8213/ac63a5
SOARES-SANTOS M, KESSLER R, BERGER E, et al. A dark energy camera search for an optical counterpart to the first advanced LIGO gravitational wave event GW150914[J]. The Astrophysical Journal Letters, 2016, 823(2): L33. doi: 10.3847/2041-8205/823/2/L33http://dx.doi.org/10.3847/2041-8205/823/2/L33
MANUEL A M, PHILLION D W, OLIVIER S S, et al. Curvature wavefront sensing performance evaluation for active correction of the large synoptic survey telescope (LSST)[J]. Optics Express, 2010, 18(2): 1528-1552. doi: 10.1364/oe.18.001528http://dx.doi.org/10.1364/oe.18.001528
AN Q C, WU X X, LIN X D, et al. Alignment of DECam-like large survey telescope for real-time active optics and error analysis[J]. Optics Communications, 2021, 484: 126685. doi: 10.1016/j.optcom.2020.126685http://dx.doi.org/10.1016/j.optcom.2020.126685
NESTOR D B, TURNSHEK D A, RAO S M. MMT survey for intervening Mg II absorption[J]. The Astrophysical Journal, 2006, 643(1): 75-80. doi: 10.1086/501498http://dx.doi.org/10.1086/501498
CLOSE L M, WILDI F, LLOYD‐HART M, et al. High‐resolution images of orbital motion in the trapezium cluster: first scientific results from the multiple mirror telescope deformable secondary mirror adaptive optics System1[J]. The Astrophysical Journal, 2003, 599(1): 537-547. doi: 10.1086/379150http://dx.doi.org/10.1086/379150
YANG P Q, HIPPLER S, DEEN C P, et al. Characterization of the transmitted near-infrared wavefront error for the GRAVITY/VLTI Coudé Infrared Adaptive Optics System[J]. Optics Express, 2013, 21(7): 9069-9080. doi: 10.1364/oe.21.009069http://dx.doi.org/10.1364/oe.21.009069
MCLEOD B A, BOUCHEZ A H, CATROPA D, et al. The wide field phasing testbed for the giant magellan telescope[C]. SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 12182, Ground-Based and Airborne Telescopes IX, Montréal, Québec, Canada. 2022, 12182: 71-86. doi: 10.1117/12.2630588http://dx.doi.org/10.1117/12.2630588
YAN H L, LI H N, WANG S, et al. Overview of the LAMOST survey in the first decade[J]. Innovation (Cambridge (Mass)), 2022, 3(2): 100224. doi: 10.1016/j.xinn.2022.100224http://dx.doi.org/10.1016/j.xinn.2022.100224
安其昌, 吴小霞, 张景旭, 等. 大口径巡天望远镜分区域曲率传感方法研究[J]. 中国光学(中英文), 2023, 16(2): 358-365. doi: 10.37188/co.2022-0117http://dx.doi.org/10.37188/co.2022-0117
AN Q C, WU X X, ZHANG J X, et al. Sub region curvature sensing method for survey telescope with larger aperture[J]. Chinese Optics, 2023, 16(2): 358-365.(in Chinese). doi: 10.37188/co.2022-0117http://dx.doi.org/10.37188/co.2022-0117
BONNET H, ESSELBORN M, MÜLLER M, et al. E-ELT active optics system modeling and performance evaluation[C]. Integrated Modeling of Complex Optomechanical Systems, SPIE, 2011, 8336: 250-259. doi: 10.1117/12.915741http://dx.doi.org/10.1117/12.915741
DIMMLER M, MARRERO J, LEVEQUE S, et al. Improved E-ELT subsystem and component specifications, thanks to M1 test facility[C]. Ground-based and Airborne Telescopes V. Montréal, Quebec, 2014 Jul 22, Canada. SPIE, 2014, 9145: 575-589. doi: 10.1117/12.2055142http://dx.doi.org/10.1117/12.2055142
0
浏览量
12
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构