浏览全部资源
扫码关注微信
江苏大学 机械工程学院,江苏 镇江 212013
[ "沈宗宝(1984-),男,江苏盐城人,高级实验师,分别于2007年、2010年、2017年在江苏大学分别获得学士、硕士、博士学位,主要从事激光先进制造技术的研究。E-mail: szb@ujs.edu.cn" ]
韩曜阳(1998-),男,江苏徐州人,硕士研究生,2021年于江苏大学获得学士学位,主要从事激光弯曲成形机理方面研究。E-mail: 1216924073@qq.com
纸质出版日期:2024-03-25,
收稿日期:2023-09-21,
修回日期:2023-10-10,
移动端阅览
沈宗宝,韩曜阳,孟康楠等.圆振荡激光束提高激光弯曲成形效率[J].光学精密工程,2024,32(06):806-821.
SHEN Zongbao,HAN Yaoyang,MENG Kangnan,et al.Improving the efficiency of laser bending forming using circularly oscillating laser beam[J].Optics and Precision Engineering,2024,32(06):806-821.
沈宗宝,韩曜阳,孟康楠等.圆振荡激光束提高激光弯曲成形效率[J].光学精密工程,2024,32(06):806-821. DOI: 10.37188/OPE.20243206.0806.
SHEN Zongbao,HAN Yaoyang,MENG Kangnan,et al.Improving the efficiency of laser bending forming using circularly oscillating laser beam[J].Optics and Precision Engineering,2024,32(06):806-821. DOI: 10.37188/OPE.20243206.0806.
激光弯曲成形技术常用的激光类型是点激光,在温度梯度机理的作用下单次成形角度有上限,在3°左右。为了增大点激光单次成形角度,提高成形效率,本文以不锈钢304板为对象,通过试验对比探索了将圆振荡模式应用于激光弯曲成形中以提高弯曲角方法的可行性;并且借助于三维视觉传感器测量板件在圆振荡激光束弯曲成形过程中的动态响应,从余热效应、吸收率等角度分析其弯曲成形机理。对比试验结果显示,在激光能量密度较高的情况下,圆振荡模式确实可以明显提高工件的弯曲角,增长率在60%左右。同时,三维视觉传感器的测量结果显示出了板件在成形过程中的复杂形变与角度变化过程:板件在长度与宽度方向上均产生了塑性变形,长宽形变比约为10∶1;单次扫描成形板件弯曲角增长过程呈现不同的增长曲线;多次扫描成形弯曲角分布不均衡。此外,板件厚度也逐渐增加,热影响区微观晶粒得到细化。为进一步理解圆振荡激光束弯曲成形过程与机理提供了试验支撑。
Laser bending forming techniques commonly utilize point lasers, which have a limited maximum bending angle of approximately 3° due to the temperature gradient mechanism. To increase the bending angle and improve the forming efficiency of point laser bending, this study explored the feasibility of applying the circular oscillation mode to enhance the bending angle in the bending process of stainless steel 304 sheets. Additionally, the dynamic response of the workpiece during circular oscillation laser bending forming was measured using a three-dimensional vision sensor to investigate the bending deformation mechanism from the perspective of thermal effect, variation in absorption, etc.The comparative experimental results show that the circular oscillation mode significantly improves the bending angle of the workpiece, with a growth rate of approximately 60% when the laser has a higher energy density. At the same time, the measurement results from the three-dimensional vision sensor reveal the complex deformation and angle changes of the workpiece during the forming process: plastic deformation occurs in both the length and width directions of the workpiece,with the length-width deformation ratio is about 10:1; the growth of the bending angle during a single scan exhibits different growth curves; and the distribution of bending angles in multiple scans is uneven.In addition, the thickness of the plate also gradually increases, and the micro-grains in the heat-affected zone are refined.These experimental findings provide support for a better understanding of the process and mechanism of circular oscillation laser bending forming.
激光弯曲成形圆振荡激光束不锈钢304变形机理
laser bendingcircular oscillation modeSS304bending mechanism
管延锦, 孙胜. 板料激光弯曲的屈曲机理的研究[J]. 激光技术, 2001, 25(1): 11-14. doi: 10.3969/j.issn.1001-3806.2001.01.015http://dx.doi.org/10.3969/j.issn.1001-3806.2001.01.015
GUAN Y J, SUN S. Study on buckling mechanism of laser bending of the sheet metal[J]. Laser Technology, 2001, 25(1): 11-14.(in Chinese). doi: 10.3969/j.issn.1001-3806.2001.01.015http://dx.doi.org/10.3969/j.issn.1001-3806.2001.01.015
MAGEE J, WATKINS K G, STEEN W M. Advances in laser forming[J]. Journal of Laser Applications, 1998, 10(6): 235-246. doi: 10.2351/1.521859http://dx.doi.org/10.2351/1.521859
HU Z, KOVACEVIC R, LABUDOVIC M. Experimental and numerical modeling of buckling instability of laser sheet forming[J]. International Journal of Machine Tools and Manufacture, 2002, 42(13): 1427-1439. doi: 10.1016/s0890-6955(02)00075-5http://dx.doi.org/10.1016/s0890-6955(02)00075-5
DEARDEN G, EDWARDSON SP, WATKINS KG, et al. Magee J. Laser Assisted Forming for Ship Building[C]. SAIL, Williamsburg, VA. 2003 Jun 2:2-4.
HU Z, LABUDOVIC M, WANG H, et al. Computer simulation and experimental investigation of sheet metal bending using laser beam scanning[J]. International Journal of Machine Tools and Manufacture, 2001, 41(4): 589-607. doi: 10.1016/s0890-6955(00)00058-4http://dx.doi.org/10.1016/s0890-6955(00)00058-4
顾杰岩, 闫崇京, 张翅超, 等. 板材单曲面激光弯曲成形的误差补偿研究[J]. 中国激光, 2021, 48(10): 1002108. doi: 10.3788/CJL202148.1002108http://dx.doi.org/10.3788/CJL202148.1002108
GU J Y, YAN C J, ZHANG C C, et al. Study on error compensation for laser bending of single-curved surface[J]. Chinese Journal of Lasers, 2021, 48(10): 1002108.(in Chinese). doi: 10.3788/CJL202148.1002108http://dx.doi.org/10.3788/CJL202148.1002108
王晓岗, 石永军, 郭延阔, 等. 层状金属复合板的激光弯曲成形及边缘效应控制[J]. 中国激光, 2020, 47(3): 0302004. doi: 10.3788/cjl202047.0302004http://dx.doi.org/10.3788/cjl202047.0302004
WANG X G, SHI Y J, GUO Y K, et al. Laser bending and edge effect control of laminated metal composite plate[J]. Chinese Journal of Lasers, 2020, 47(3): 0302004.(in Chinese). doi: 10.3788/cjl202047.0302004http://dx.doi.org/10.3788/cjl202047.0302004
CHEN G, XU X. Experimental and 3D Finite Element Studies of CW Laser Forming of Thin Stainless Steel Sheets[J]. Journal of Manufacturing Science and Engineering, 2001, 123(1):66-73. doi: 10.1115/1.1347036http://dx.doi.org/10.1115/1.1347036
KYRSANIDI A K, KERMANIDIS T B, PANTELAKIS S G. An analytical model for the prediction of distortions caused by the laser forming process[J]. Journal of Materials Processing Technology, 2000, 104(1/2): 94-102. doi: 10.1016/s0924-0136(00)00520-3http://dx.doi.org/10.1016/s0924-0136(00)00520-3
SHI Y J, LIU Y C, YAO Z Q, et al. A study on bending direction of sheet metal in laser forming[J]. Journal of Applied Physics, 2008, 103(5). doi: 10.1063/1.2887995http://dx.doi.org/10.1063/1.2887995
SHI Y, YAO Z, SHEN H, et al. Research on the mechanisms of laser forming for the metal plate[J]. International Journal of Machine Tools and Manufacture,2005,46(12-13):1689-97. doi: 10.1016/j.ijmachtools.2005.09.016http://dx.doi.org/10.1016/j.ijmachtools.2005.09.016
RAZA M S, DATTA S, GOPINATH M, et al. Monitoring and analysis of melt-assisted deformation behavior of 304L stainless steel during multipass laser forming process using IR pyrometer and laser-based displacement sensor[J]. Optics & Laser Technology, 2021, 135: 106718. doi: 10.1016/j.optlastec.2020.106718http://dx.doi.org/10.1016/j.optlastec.2020.106718
HOSEINPOUR GOLLO M, MOSLEMI NAEINI H, LIAGHAT G H, et al. An experimental study of sheet metal bending by pulsed Nd: YAG laser with DOE method[J]. International Journal of Material Forming, 2008, 1(1): 137-140. doi: 10.1007/s12289-008-0010-7http://dx.doi.org/10.1007/s12289-008-0010-7
GISARIO A, MEHRPOUYA M, VENETTACCI S, et al. Laser-assisted bending of Titanium Grade-2 sheets: experimental analysis and numerical simulation[J]. Optics and Lasers in Engineering, 2017, 92: 110-119. doi: 10.1016/j.optlaseng.2016.09.004http://dx.doi.org/10.1016/j.optlaseng.2016.09.004
孙涛. 玻璃纤维增强铝合金层板激光弯曲成形试验及模拟[D]. 大连: 大连理工大学, 2022.
SUN T. Experimental Study and Simulation on Laser Bending of Glass Laminate Aluminium Reinforced Epoxy[D]. Dalian: Dalian University of Technology, 2022. (in Chinese)
管延锦, 孙胜, 赵国群, 等. 材料性能参数与板料激光弯曲成形角度的相关性研究[J]. 中国激光, 2004, 31(4): 499-504. doi: 10.3321/j.issn:0258-7025.2004.04.027http://dx.doi.org/10.3321/j.issn:0258-7025.2004.04.027
GUAN Y J, SUN S, ZHAO G Q, et al. Study on relationship between material properties and bending angles in laser forming process of sheet metals[J]. Chinese Journal of Lasers, 2004, 31(4): 499-504.(in Chinese). doi: 10.3321/j.issn:0258-7025.2004.04.027http://dx.doi.org/10.3321/j.issn:0258-7025.2004.04.027
THOMSEN A N, KRISTIANSEN M, KRISTIANSEN E, et al. Online measurement of the surface during laser forming[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(3): 1569-1579. doi: 10.1007/s00170-020-04950-6http://dx.doi.org/10.1007/s00170-020-04950-6
SHI Y J, SHEN H, YAO Z Q, et al. Edge effects of metal plate in laser forming[J]. Transactions of Nonferrous Metals Society of China, 2005, 15(S3):260-263.
NIKOLAEV NIKOLOV G, NOEL THOMSEN A, KRISTIANSEN M. Hardening in laser forming under the temperature gradient mechanism[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1135(1): 012006. doi: 10.1088/1757-899x/1135/1/012006http://dx.doi.org/10.1088/1757-899x/1135/1/012006
EDWARDSON S P, GRIFFITHS J, EDWARDS K R, et al. Laser forming: overview of the controlling factors in the temperature gradient mechanism[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2010, 224(5): 1031-1040. doi: 10.1243/09544062jmes1776http://dx.doi.org/10.1243/09544062jmes1776
THOMSON G, PRIDHAM M. Material property changes associated with laser forming of mild steel components[J]. Journal of Materials Processing Technology, 2001, 118(1/2/3): 40-44. doi: 10.1016/s0924-0136(01)00859-7http://dx.doi.org/10.1016/s0924-0136(01)00859-7
MERKLEIN M, HENNIGE T, GEIGER M. Laser forming of aluminium and aluminium alloys-microstructural investigation[J]. Journal of Materials Processing Technology, 2001, 115(1): 159-165. doi: 10.1016/s0924-0136(01)00759-2http://dx.doi.org/10.1016/s0924-0136(01)00759-2
CHENG J, YAO Y L. Microstructure integrated modeling of multiscan laser forming[J]. Journal of Manufacturing Science & Engineering, 2002, 124(2):379-388. doi: 10.1115/1.1459088http://dx.doi.org/10.1115/1.1459088
MARYA M, EDWARDS G R. A study on the laser forming of near-alpha and metastable beta titanium alloy sheets[J]. Journal of Materials Processing Technology, 2001, 108(3): 376-383. doi: 10.1016/s0924-0136(00)00831-1http://dx.doi.org/10.1016/s0924-0136(00)00831-1
VOLLERTSEN F. Forming, Sintering and Rapid Prototyping[M]. Handbook of the EuroLaser Academy. Boston, MA: Springer US, 1998: 357-453. doi: 10.1007/978-1-4615-5297-0_6http://dx.doi.org/10.1007/978-1-4615-5297-0_6
刘友强, 曹银花, 李景, 等. 激光加工用5kW光纤耦合半导体激光器[J]. 光学 精密工程, 2015, 23(5): 1279-1287. doi: 10.3788/ope.20152305.1279http://dx.doi.org/10.3788/ope.20152305.1279
LIU Y Q, CAO Y H, LI J, et al. 5 kW fiber coupling diode laser for laser processing[J]. Opt. Precision Eng., 2015, 23(5): 1279-1287.(in Chinese). doi: 10.3788/ope.20152305.1279http://dx.doi.org/10.3788/ope.20152305.1279
李鹏举, 潘登, 刘顺利. 长焦深连续立方相位板的飞秒激光加工与性能测试[J]. 光学 精密工程, 2022, 30(17): 2088-2093. doi: 10.37188/OPE.20223017.2088http://dx.doi.org/10.37188/OPE.20223017.2088
LI P J, PAN D, LIU S L. Continuous cubic phase plate with long depth of focus fabricated by femtosecond laser and its optical performance[J]. Opt. Precision Eng., 2022, 30(17): 2088-2093.(in Chinese). doi: 10.37188/OPE.20223017.2088http://dx.doi.org/10.37188/OPE.20223017.2088
0
浏览量
9
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构