浏览全部资源
扫码关注微信
南京航空航天大学 电子信息工程学院,江苏 南京 211106
[ "刘玉淇(2000-),女,黑龙江哈尔滨人,博士研究生,2018年于广西师范大学获得学士学位,主要研究方向为图像处理与机器视觉检测。E-mail:TOLyuqi@nuaa.edu.cn" ]
[ "吴一全(1963-),男,江苏南京人,博士,教授,博士生导师,分别于1984年、1987年、1998年在南京航空航天大学获得学士、硕士、博士学位,主要研究方向为视觉检测与图像测量、遥感图像处理与理解、红外目标检测与识别、视频处理与智能分析等。E-mail:nuaaimage@163.com" ]
纸质出版日期:2024-03-25,
收稿日期:2023-09-25,
修回日期:2023-11-22,
移动端阅览
刘玉淇,吴一全.基于机器视觉的太阳能电池片缺陷检测算法综述[J].光学精密工程,2024,32(06):868-900.
LIU Yuqi,WU Yiquan.Review of defect detection algorithms for solar cells based on machine vision[J].Optics and Precision Engineering,2024,32(06):868-900.
刘玉淇,吴一全.基于机器视觉的太阳能电池片缺陷检测算法综述[J].光学精密工程,2024,32(06):868-900. DOI: 10.37188/OPE.20243206.0868.
LIU Yuqi,WU Yiquan.Review of defect detection algorithms for solar cells based on machine vision[J].Optics and Precision Engineering,2024,32(06):868-900. DOI: 10.37188/OPE.20243206.0868.
太阳能电池片(Photovoltaic, PV)表面缺陷检测是光伏组件生产中不可或缺的流程。基于机器视觉的自动缺陷检测方法因其高精度、实时性、低成本等优点得到了广泛应用。本文综述了基于机器视觉的太阳能电池片表面缺陷检测方法的研究进展。首先,阐述了太阳能电池片表面成像方式,列举了典型缺陷类型。然后重点分析了基于传统机器视觉算法及基于深度学习算法进行太阳能电池片表面缺陷检测的原理。将传统机器视觉算法分为图像域分析法、变换域分析法进行综述;从无监督学习、有监督学习和弱监督及半监督学习三个方面分别概述了近几年来基于深度学习的太阳能电池片表面缺陷检测的研究现状。对太阳能电池片表面缺陷检测各种典型方法进一步细分归类和对比分析,总结了每种方法的优缺点。随后,介绍了9种太阳能电池片表面缺陷图像数据集及缺陷检测性能评价指标。最后,系统总结了太阳能电池片缺陷检测常见的关键问题及其解决方法,对太阳能电池片表面缺陷检测的未来发展趋势进行了展望。
Solar cell surface defect detection is an indispensable process in the production of photovoltaic modules. Automatic defect detection methods based on machine vision are widely used due to their high accuracy, real-time and low cost advantages. This paper reviewed the research progress of machine vision-based solar cell surface defect detection methods. First, the solar cell surface imaging method was described and typical defect types were listed. Then, the principles of solar cell surface defect detection based on traditional machine vision algorithms and based on deep learning algorithms were analyzed, respectively. The traditional machine vision algorithms were reviewed in terms of image domain analysis, transform domain analysis; the research status of solar cell surface defect detection based on deep learning in recent years was outlined in terms of unsupervised learning, supervised learning and weakly supervised and semi-supervised learning, respectively. Various typical methods for solar cell surface defect detection were further subdivided into categories and comparative analysis, and the advantages and disadvantages of each method were summarized. Subsequently, nine types of solar cell surface defect image datasets and defect detection performance evaluation metrics were introduced. Finally, the common key problems of solar cell defect detection and their solutions were summarized systematically, and the future development trend of solar cell surface defect detection was foreseen.
太阳能电池缺陷检测机器视觉深度学习检测网络
solar cellsdefect detectionmachine visiondeep learningdetection network
KABIR E, KUMAR P, KUMAR S, et al. Solar energy: potential and future prospects[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 894-900. doi: 10.1016/j.rser.2017.09.094http://dx.doi.org/10.1016/j.rser.2017.09.094
ŠKARVADA P, TOMÁNEK P, KOKTAVÝ P, et al. A variety of microstructural defects in crystalline silicon solar cells[J]. Applied Surface Science, 2014, 312: 50-56. doi: 10.1016/j.apsusc.2014.05.064http://dx.doi.org/10.1016/j.apsusc.2014.05.064
DHIMISH M, MATHER P. Development of novel solar cell micro crack detection technique[J]. IEEE Transactions on Semiconductor Manufacturing, 2019, 32(3): 277-285. doi: 10.1109/tsm.2019.2921951http://dx.doi.org/10.1109/tsm.2019.2921951
周求湛, 张彦创, 周承鹏, 等. 1/f噪声的精确测量及其在太阳能电池可靠性筛选中的应用[J]. 光学 精密工程, 2012, 20(3): 625-631. doi: 10.3788/ope.20122003.0625http://dx.doi.org/10.3788/ope.20122003.0625
ZHOU Q Z, ZHANG Y C, ZHOU C P, et al. Precise measurement of 1/f noise and its application to reliability screening for solar cells[J]. Opt. Precision Eng., 2012, 20(3): 625-631.(in Chinese). doi: 10.3788/ope.20122003.0625http://dx.doi.org/10.3788/ope.20122003.0625
HILMERSSON C, HESS D P, DALLAS W, et al. Crack detection in single-crystalline silicon wafers using impact testing[J]. Applied Acoustics, 2008, 69(8): 755-760. doi: 10.1016/j.apacoust.2007.03.002http://dx.doi.org/10.1016/j.apacoust.2007.03.002
LI B, HE X H, FANG S. Automatic inspection of surface crack in solar cell images[C]. 2011 Chinese Control and Decision Conference (CCDC). Mianyang, China. IEEE, 2011: 993-998. doi: 10.1109/ccdc.2011.5968329http://dx.doi.org/10.1109/ccdc.2011.5968329
周健, 卞洁玉, 李红飞, 等. 晶体硅光伏电池的标准测试[J]. 光学 精密工程, 2014, 22(6): 1517. doi: 10.3788/ope.20142206.1517http://dx.doi.org/10.3788/ope.20142206.1517
ZHOU J, BIAN J Y, LI H F, et al. Standard measurement of crystal silicon solar cells[J]. Opt. Precision Eng., 2014, 22(6): 1517.(in Chinese). doi: 10.3788/ope.20142206.1517http://dx.doi.org/10.3788/ope.20142206.1517
KUMAR S, JENA P, SINHA A, et al. Application of infrared thermography for non-destructive inspection of solar photovoltaic module[J]. Nondestructive Testing and Evaluation, 2017, 6: 25-32.
GALLARDO-SAAVEDRA S, HERNÁNDEZ-CALLEJO L, DEL CARMEN ALONSO-GARCÍA M, et al. Nondestructive characterization of solar PV cells defects by means of electroluminescence, infrared thermography, I–V curves and visual tests: experimental study and comparison[J]. Energy, 2020, 205: 117930. doi: 10.1016/j.energy.2020.117930http://dx.doi.org/10.1016/j.energy.2020.117930
DU B L, YANG R Z, HE Y Z, et al. Nondestructive inspection, testing and evaluation for Si-based, thin film and multi-junction solar cells: an overview[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 1117-1151. doi: 10.1016/j.rser.2017.05.017http://dx.doi.org/10.1016/j.rser.2017.05.017
YIN C C, WEN T K. ESPI solution for defect detection in crystalline photovoltaic cells[C]. Seventh International Symposium on Precision Engineering Measurements and Instrumentation. Yunnan, China. SPIE, 2011: 832-837. doi: 10.1117/12.905261http://dx.doi.org/10.1117/12.905261
刘剑, 陆建, 倪晓武, 等. 单晶硅片在脉冲激光作用下的断裂行为[J]. 光学 精密工程, 2011, 19(2): 414-420. doi: 10.3788/ope.20111902.0414http://dx.doi.org/10.3788/ope.20111902.0414
LIU J, LU J, NI X W, et al. Fracture behavior during pulsed laser irradiating silicon wafer[J]. Opt. Precision Eng., 2011, 19(2): 414-420.(in Chinese). doi: 10.3788/ope.20111902.0414http://dx.doi.org/10.3788/ope.20111902.0414
陈文志, 张凤燕, 张然, 等. 基于电致发光成像的太阳能电池缺陷检测[J]. 发光学报, 2013, 34(8): 1028-1034. doi: 10.3788/fgxb20133408.1028http://dx.doi.org/10.3788/fgxb20133408.1028
CHEN W Z, ZHANG F Y, ZHANG R, et al. Defect detection of solar cells based on electroluminescence imaging[J]. Chinese Journal of Luminescence, 2013, 34(8): 1028-1034.(in Chinese). doi: 10.3788/fgxb20133408.1028http://dx.doi.org/10.3788/fgxb20133408.1028
DRABCZYK K, KULESZA-MATLAK G, DRYGA\LA A, et al. Electroluminescence imaging for determining the influence of metallization parameters for solar cell metal contacts[J]. Solar Energy, 2016, 126: 14-21. doi: 10.1016/j.solener.2015.12.029http://dx.doi.org/10.1016/j.solener.2015.12.029
QI S X, YANG J R, ZHONG Z Y. A review on industrial surface defect detection based on deep learning technology[C]. 2020 The 3rd International Conference on Machine Learning and Machine Intelligence. Hangzhou China. ACM, 2020: 24-30. doi: 10.1145/3426826.3426832http://dx.doi.org/10.1145/3426826.3426832
赵朗月, 吴一全. 基于机器视觉的表面缺陷检测方法研究进展[J]. 仪器仪表学报, 2022, 43(1): 198-219.
ZHAO L Y, WU Y Q. Research progress of surface defect detection methods based on machine vision[J]. Chinese Journal of Scientific Instrument, 2022, 43(1): 198-219.(in Chinese)
王宪保, 李洁, 姚明海, 等. 基于深度学习的太阳能电池片表面缺陷检测方法[J]. 模式识别与人工智能, 2014, 27(6): 517-523. doi: 10.3969/j.issn.1003-6059.2014.06.006http://dx.doi.org/10.3969/j.issn.1003-6059.2014.06.006
WANG X B, LI J, YAO M H, et al. Solar cells surface defects detection based on deep learning[J]. Pattern Recognition and Artificial Intelligence, 2014, 27(6): 517-523.(in Chinese). doi: 10.3969/j.issn.1003-6059.2014.06.006http://dx.doi.org/10.3969/j.issn.1003-6059.2014.06.006
ABDELHAMID M, SINGH R, OMAR M. Review of microcrack detection techniques for silicon solar cells[J]. IEEE Journal of Photovoltaics, 2014, 4(1): 514-524. doi: 10.1109/jphotov.2013.2285622http://dx.doi.org/10.1109/jphotov.2013.2285622
ISRAIL M, ANWAR S A, ABDULLAH M Z. Automatic detection of micro-crack in solar wafers and cells: a review[J]. Transactions of the Institute of Measurement and Control, 2013, 35(5): 606-618. doi: 10.1177/0142331212457583http://dx.doi.org/10.1177/0142331212457583
ENNEMRI A, LOGERAIS P O, BALISTROU M, et al. Cracks in silicon photovoltaic modules: a review[J]. Journal of Optoelectronics and Advanced Materials, 2019, 21(1-2): 74-92.
钱晓亮, 张鹤庆, 陈永信, 等. 基于机器视觉的太阳能电池片表面缺陷检测研究现状及展望[J]. 北京工业大学学报, 2017, 43(1): 76-85. doi: 10.11936/bjutxb2016040063http://dx.doi.org/10.11936/bjutxb2016040063
QIAN X L, ZHANG H Q, CHEN Y X, et al. Research development and prospect of solar cells surface defects detection based on machine vision[J]. Journal of Beijing University of Technology, 2017, 43(1): 76-85.(in Chinese). doi: 10.11936/bjutxb2016040063http://dx.doi.org/10.11936/bjutxb2016040063
QIAN X L, ZHANG H Q, ZHANG H L, et al. Solar cell surface defects detection based on computer vision[J]. International Journal of Performability Engineering, 2017, 13(7): 1048-1056.
KANDEAL A W, ELKADEEM M R, KUMAR THAKUR A, et al. Infrared thermography-based condition monitoring of solar photovoltaic systems: a mini review of recent advances[J]. Solar Energy, 2021, 223: 33-43. doi: 10.1016/j.solener.2021.05.032http://dx.doi.org/10.1016/j.solener.2021.05.032
ANWAR S A, ABDULLAH M Z. Micro-crack detection of multicrystalline solar cells featuring an improved anisotropic diffusion filter and image segmentation technique[J]. EURASIP Journal on Image and Video Processing, 2014, 2014(1): 15. doi: 10.1186/1687-5281-2014-15http://dx.doi.org/10.1186/1687-5281-2014-15
TSAI D M, LUO J Y. Mean shift-based defect detection in multicrystalline solar wafer surfaces[J]. IEEE Transactions on Industrial Informatics, 2011, 7(1): 125-135. doi: 10.1109/tii.2010.2092783http://dx.doi.org/10.1109/tii.2010.2092783
TSAI D M, CHANG C C, CHAO S M. Micro-crack inspection in heterogeneously textured solar wafers using anisotropic diffusion[J]. Image and Vision Computing, 2010, 28(3): 491-501. doi: 10.1016/j.imavis.2009.08.001http://dx.doi.org/10.1016/j.imavis.2009.08.001
KO J, RHEEM J. Anisotropic diffusion based micro-crack inspection in polycrystalline solar wafers[C]. World Congress on Engineering. London: International Association of Engineers (IAENG), 2010, 2188: 524-528.
KO J, RHEEM J. Micro-crack detection in polycrystalline solar cells using improved anisotropic diffusion model[J]. Journal of the Institute of Electronics Engineers of Korea, 2013, 50(5): 183-190. doi: 10.5573/ieek.2013.50.5.183http://dx.doi.org/10.5573/ieek.2013.50.5.183
AGHAMOHAMMADI A H, PRABUWONO A S, SAHRAN S, et al. Solar cell panel crack detection using particle swarm optimization algorithm[C]. 2011 International Conference on Pattern Analysis and Intelligence Robotics. Kuala Lumpur, Malaysia. IEEE, 2011: 160-164. doi: 10.1109/icpair.2011.5976888http://dx.doi.org/10.1109/icpair.2011.5976888
DAFNY LYDIA M D, SINDHU K S, GUGAN K. Analysis on solar panel crack detection using optimization techniques[J]. Journal of Nano-and Electronic Physics, 2017, 9(2): 2004-1-02004-5. doi: 10.21272/jnep.9(2).02004http://dx.doi.org/10.21272/jnep.9(2).02004
STROMER D, VETTER A, OEZKAN H C, et al. Enhanced crack segmentation (eCS): a reference algorithm for segmenting cracks in multicrystalline silicon solar cells[J]. IEEE Journal of Photovoltaics, 2019, 9(3): 752-758. doi: 10.1109/jphotov.2019.2895808http://dx.doi.org/10.1109/jphotov.2019.2895808
李洁, 袁知博, 秦嘉悦. 基于Sobel算子边缘检测的太阳电池缺陷特征提取方法[J]. 太阳能学报, 2021, 42(1): 63-68.
LI J, YUAN Z B, QIN J Y. Research on solar cells defects feature extraction based on sobel operator edge detection[J]. Acta Energiae Solaris Sinica, 2021, 42(1): 63-68.(in Chinese)
DEMANT M, WELSCHEHOLD T, OSWALD M, et al. Microcracks in silicon wafers I: inline detection and implications of crack morphology on wafer strength[J]. IEEE Journal of Photovoltaics, 2016, 6(1): 126-135. doi: 10.1109/jphotov.2015.2494692http://dx.doi.org/10.1109/jphotov.2015.2494692
刘磊, 王冲, 赵树旺, 等. 基于机器视觉的太阳能电池片缺陷检测技术的研究[J]. 电子测量与仪器学报, 2018, 32(10): 47-52. doi: 10.13382/j.jemi.2018.10.007http://dx.doi.org/10.13382/j.jemi.2018.10.007
LIU L, WANG C, ZHAO S W, et al. Research on solar cells defect detection technology based on machine vision[J]. Journal of Electronic Measurement and Instrumentation, 2018, 32(10): 47-52.(in Chinese). doi: 10.13382/j.jemi.2018.10.007http://dx.doi.org/10.13382/j.jemi.2018.10.007
DEITSCH S, CHRISTLEIN V, BERGER S, et al. Automatic classification of defective photovoltaic module cells in electroluminescence images[J]. Solar Energy, 2019, 185: 455-468. doi: 10.1016/j.solener.2019.02.067http://dx.doi.org/10.1016/j.solener.2019.02.067
ALCANTARILLA P F, BARTOLI A, DAVISON A J. KAZE Features[M]. Computer Vision-ECCV 2012. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012: 214-227. doi: 10.1007/978-3-642-33783-3_16http://dx.doi.org/10.1007/978-3-642-33783-3_16
LOWE D G. Object recognition from local scale-invariant features[C]. Proceedings of the Seventh IEEE International Conference on Computer Vision.20-27, 1999, Kerkyra, Greece. IEEE, 2002: 1150-1157. doi: 10.1109/iccv.1999.790410http://dx.doi.org/10.1109/iccv.1999.790410
BAY H, TUYTELAARS T, VAN GOOL L. SURF: Speeded up Robust Features[M]. Computer Vision-ECCV 2006. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006: 404-417. doi: 10.1007/11744023_32http://dx.doi.org/10.1007/11744023_32
SERFA JUAN R O, KIM J. Photovoltaic cell defect detection model based-on extracted electroluminescence images using SVM classifier[C]. 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). Fukuoka, Japan. IEEE, 2020: 578-582. doi: 10.1109/icaiic48513.2020.9065065http://dx.doi.org/10.1109/icaiic48513.2020.9065065
伍李春, 刘明周, 蒋倩男, 等. 基于人工神经网络的太阳能电池片表面质量检测系统[J]. 合肥工业大学学报(自然科学版), 2017, 40(9): 1176-1180, 1192.
WU L C, LIU M Z, JIANG Q N, et al. Solar cell surface quality detection system based on artificial neural network[J]. Journal of Hefei University of Technology (Natural Science), 2017, 40(9): 1176-1180, 1192.(in Chinese)
DEMIRCI MY, BEŞLI N, GÜMÜŞÇÜ A. Efficient deep feature extraction and classification for identifying defective photovoltaic module cells in electroluminescence images[J]. Expert Systems With Applications, 2021, 175: 114810. doi: 10.1016/j.eswa.2021.114810http://dx.doi.org/10.1016/j.eswa.2021.114810
张玮华. 太阳能电池硅片缺陷自动检测分类方法研究[D]. 上海: 东华大学, 2014.
ZHANG W H. Research on Method of Solar Cell Silicon Defects Automatic Detection Classification[D]. Shanghai: Donghua University, 2014. (in Chinese)
FU Z, ZHAO Y Z, LIU Y, et al. Solar cell crack inspection by image processing[C]. Proceedings of 2004 International Conference on the Business of Electronic Product Reliability and Liability. Shanghai, China. IEEE, 2004: 77-80. doi: 10.1109/beprl.2004.1308139http://dx.doi.org/10.1109/beprl.2004.1308139
TSENG D C, LIU Y S, CHOU C M. Automatic finger interruption detection in electroluminescence images of multicrystalline solar cells[J]. Mathematical Problems in Engineering, 2015, 2015: 879675. doi: 10.1155/2015/879675http://dx.doi.org/10.1155/2015/879675
TSAI D M, LI G N, LI W C, et al. Defect detection in multi-crystal solar cells using clustering with uniformity measures[J]. Advanced Engineering Informatics, 2015, 29(3): 419-430. doi: 10.1016/j.aei.2015.01.014http://dx.doi.org/10.1016/j.aei.2015.01.014
XU P, ZHOU W J, FEI M R. Detection methods for micro-cracked defects of photovoltaic modules based on machine vision[C]. 2014 IEEE 3rd International Conference on Cloud Computing and Intelligence Systems. Shenzhen. IEEE, 2014: 609-613. doi: 10.1109/ccis.2014.7175807http://dx.doi.org/10.1109/ccis.2014.7175807
SU B Y, CHEN H Y, ZHU Y F, et al. Classification of manufacturing defects in multicrystalline solar cells with novel feature descriptor[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(12): 4675-4688. doi: 10.1109/tim.2019.2900961http://dx.doi.org/10.1109/tim.2019.2900961
SONG X Y, YANG L, XIA X H, et al. Defect detection method for solar cells based on human visual characteristics[C]. 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE). Harbin, China. IEEE, 2020: 515-518. doi: 10.1109/icmcce51767.2020.00118http://dx.doi.org/10.1109/icmcce51767.2020.00118
CHIOU Y C, LIU J Z, LIANG Y T. Micro crack detection of multi-crystalline silicon solar wafer using machine vision techniques[J]. Sensor Review, 2011, 31(2): 154-165. doi: 10.1108/02602281111110013http://dx.doi.org/10.1108/02602281111110013
姚明海, 李洁, 王宪保. 基于RPCA的太阳能电池片表面缺陷检测[J]. 计算机学报, 2013, 36(9): 1943-1952. doi: 10.3724/sp.j.1016.2013.01943http://dx.doi.org/10.3724/sp.j.1016.2013.01943
YAO M H, LI J, WANG X B. Solar cells surface defects detection using RPCA method[J]. Chinese Journal of Computers, 2013, 36(9): 1943-1952.(in Chinese). doi: 10.3724/sp.j.1016.2013.01943http://dx.doi.org/10.3724/sp.j.1016.2013.01943
钱晓亮, 张鹤庆, 张焕龙, 等. 基于视觉显著性的太阳能电池片表面缺陷检测[J]. 仪器仪表学报, 2017, 38(7): 1570-1578. doi: 10.3969/j.issn.0254-3087.2017.07.002http://dx.doi.org/10.3969/j.issn.0254-3087.2017.07.002
QIAN X L, ZHANG H Q, ZHANG H L, et al. Solar cell surface defect detection based on visual saliency[J]. Chinese Journal of Scientific Instrument, 2017, 38(7): 1570-1578.(in Chinese). doi: 10.3969/j.issn.0254-3087.2017.07.002http://dx.doi.org/10.3969/j.issn.0254-3087.2017.07.002
陶志勇, 于子佳, 林森. PSOSVM算法在太阳能电池板裂缝缺陷检测研究[J]. 电子测量与仪器学报, 2021, 35(1): 18-25.
TAO Z Y, YU Z J, LIN S. Research on crack defect detection of solar cell based on PSOSVM[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(1): 18-25.(in Chinese)
LI W C, TSAI D M. Automatic saw-mark detection in multicrystalline solar wafer images[J]. Solar Energy Materials and Solar Cells, 2011, 95(8): 2206-2220. doi: 10.1016/j.solmat.2011.03.025http://dx.doi.org/10.1016/j.solmat.2011.03.025
TSAI D M, WU S C, LI W C. Defect detection of solar cells in electroluminescence images using Fourier image reconstruction[J]. Solar Energy Materials and Solar Cells, 2012, 99: 250-262. doi: 10.1016/j.solmat.2011.12.007http://dx.doi.org/10.1016/j.solmat.2011.12.007
DHIMISH M, HOLMES V. Solar cells micro crack detection technique using state-of-the-art electroluminescence imaging[J]. Journal of Science: Advanced Materials and Devices, 2019, 4(4): 499-508. doi: 10.1016/j.jsamd.2019.10.004http://dx.doi.org/10.1016/j.jsamd.2019.10.004
LI W C, TSAI D M. Wavelet-based defect detection in solar wafer images with inhomogeneous texture[J]. Pattern Recognition, 2012, 45(2): 742-756. doi: 10.1016/j.patcog.2011.07.025http://dx.doi.org/10.1016/j.patcog.2011.07.025
陈海永, 余力, 刘辉, 等. 基于经验小波的太阳能电池缺陷图像融合[J]. 山东大学学报(工学版), 2018, 48(5): 24-31.
CHEN H Y, YU L, LIU H, et al. Solar cell defect images fusion based on empirical wavelet[J]. Journal of Shandong University (Engineering Science), 2018, 48(5): 24-31.(in Chinese)
TSAI D M, WU S C, CHIU W Y. Defect detection in solar modules using ICA basis images[J]. IEEE Transactions on Industrial Informatics, 2013, 9(1): 122-131. doi: 10.1109/tii.2012.2209663http://dx.doi.org/10.1109/tii.2012.2209663
龚芳, 张学武, 孙浩. 基于独立分量分析和粒子群算法的太阳能电池表面缺陷红外热成像检测[J]. 光学学报, 2012, 32(4): 169-177. doi: 10.3788/aos201232.0415002http://dx.doi.org/10.3788/aos201232.0415002
GONG F, ZHANG X W, SUN H. Detection system for solar module surface defects based on constrained ICA model and PSO method[J]. Acta Optica Sinica, 2012, 32(4): 169-177.(in Chinese). doi: 10.3788/aos201232.0415002http://dx.doi.org/10.3788/aos201232.0415002
QIAN X L, ZHANG H Q, YANG C X, et al. Micro-cracks detection of multicrystalline solar cell surface based on self-learning features and low-rank matrix recovery[J]. Sensor Review, 2018, 38(3): 360-368. doi: 10.1108/sr-08-2017-0166http://dx.doi.org/10.1108/sr-08-2017-0166
AKRAM M W, LI G Q, JIN Y, et al. Automatic detection of photovoltaic module defects in infrared images with isolated and develop-model transfer deep learning[J]. Solar Energy, 2020, 198: 175-186. doi: 10.1016/j.solener.2020.01.055http://dx.doi.org/10.1016/j.solener.2020.01.055
吴涛, 赖菲. 基于LeNet-5模型的太阳能电池板缺陷识别分类[J]. 热力发电, 2019, 48(3): 120-125. doi: 10.19666/j.rlfd.201807147http://dx.doi.org/10.19666/j.rlfd.201807147
WU T, LAI F. Identification and classification of defects in solar cells based on LeNet-5 model[J]. Thermal Power Generation, 2019, 48(3): 120-125.(in Chinese). doi: 10.19666/j.rlfd.201807147http://dx.doi.org/10.19666/j.rlfd.201807147
CHEN H Y, WANG S, XING J. Detection of cracks in electroluminescence images by fusing deep learning and structural decoupling[C]. 2019 Chinese Automation Congress (CAC). Hangzhou, China. IEEE, 2019: 2565-2569. doi: 10.1109/cac48633.2019.8996338http://dx.doi.org/10.1109/cac48633.2019.8996338
PIERDICCA R, MALINVERNI E S, PICCININI F, et al. Deep convolutional neural network for automatic detection of damaged photovoltaic cells[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, 422: 893-900. doi: 10.5194/isprs-archives-xlii-2-893-2018http://dx.doi.org/10.5194/isprs-archives-xlii-2-893-2018
BARTLER A, MAUCH L, YANG B, et al. Automated detection of solar cell defects with deep learning[C]. 2018 26th European Signal Processing Conference (EUSIPCO). Rome, Italy. IEEE, 2018: 2035-2039. doi: 10.23919/eusipco.2018.8553025http://dx.doi.org/10.23919/eusipco.2018.8553025
AKRAM M W, LI G Q, JIN Y, et al. CNN based automatic detection of photovoltaic cell defects in electroluminescence images[J]. Energy, 2019, 189: 116319. doi: 10.1016/j.energy.2019.116319http://dx.doi.org/10.1016/j.energy.2019.116319
ZYOUT I, OATAWNEH A. Detection of PV solar panel surface defects using transfer learning of the deep convolutional neural networks[C]. 2020 Advances in Science and Engineering Technology International Conferences (ASET). Dubai, United Arab Emirates. IEEE, 2020: 1-4. doi: 10.1109/aset48392.2020.9118384http://dx.doi.org/10.1109/aset48392.2020.9118384
RAHMAN M R, TABASSUM S, HAQUE E, et al. CNN-based deep learning approach for micro-crack detection of solar panels[C]. 2021 3rd International Conference on Sustainable Technologies for Industry 4.0 (STI). Dhaka, Bangladesh. IEEE, 2021: 1-6. doi: 10.1109/sti53101.2021.9732592http://dx.doi.org/10.1109/sti53101.2021.9732592
TANG W Q, YANG Q, HU X C, et al. Convolution neural network based polycrystalline silicon photovoltaic cell linear defect diagnosis using electroluminescence images[J]. Expert Systems with Applications, 2022, 202: 117087. doi: 10.1016/j.eswa.2022.117087http://dx.doi.org/10.1016/j.eswa.2022.117087
HASSAN S, DHIMISH M. Dual spin max pooling convolutional neural network for solar cell crack detection[J]. Scientific Reports, 2023, 13: 11099. doi: 10.1038/s41598-023-38177-8http://dx.doi.org/10.1038/s41598-023-38177-8
TANG W Q, YANG Q, XIONG K X, et al. Deep learning based automatic defect identification of photovoltaic module using electroluminescence images[J]. Solar Energy, 2020, 201: 453-460. doi: 10.1016/j.solener.2020.03.049http://dx.doi.org/10.1016/j.solener.2020.03.049
DEMIRCI M Y, BEŞLI N, GÜMÜŞÇÜ A. Defective PV cell detection using deep transfer learning and EL imaging[C]. International Conference on Data Science, Machine Learning and Statistics, 2019.
CHEN H Y, PANG Y, HU Q D, et al. Solar cell surface defect inspection based on multispectral convolutional neural network[J]. Journal of Intelligent Manufacturing, 2020, 31(2): 453-468. doi: 10.1007/s10845-018-1458-zhttp://dx.doi.org/10.1007/s10845-018-1458-z
KORKMAZ D, ACIKGOZ H. An efficient fault classification method in solar photovoltaic modules using transfer learning and multi-scale convolutional neural network[J]. Engineering Applications of Artificial Intelligence, 2022, 113: 104959. doi: 10.1016/j.engappai.2022.104959http://dx.doi.org/10.1016/j.engappai.2022.104959
GE C P, LIU Z, FANG L M, et al. A hybrid fuzzy convolutional neural network based mechanism for photovoltaic cell defect detection with electroluminescence images[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(7): 1653-1664.
RICO ESPINOSA A, BRESSAN M, GIRALDO L F. Failure signature classification in solar photovoltaic plants using RGB images and convolutional neural networks[J]. Renewable Energy, 2020, 162: 249-256. doi: 10.1016/j.renene.2020.07.154http://dx.doi.org/10.1016/j.renene.2020.07.154
AHMAD A, JIN Y, ZHU C G, et al. Photovoltaic cell defect classification using convolutional neural network and support vector machine[J]. IET Renewable Power Generation, 2020, 14(14): 2693-2702. doi: 10.1049/iet-rpg.2019.1342http://dx.doi.org/10.1049/iet-rpg.2019.1342
ZHAO X L, SONG C H, ZHANG H F, et al. HRNet-based automatic identification of photovoltaic module defects using electroluminescence images[J]. Energy, 2023, 267: 126605. doi: 10.1016/j.energy.2022.126605http://dx.doi.org/10.1016/j.energy.2022.126605
MELLIT A. An embedded solution for fault detection and diagnosis of photovoltaic modules using thermographic images and deep convolutional neural networks[J]. Engineering Applications of Artificial Intelligence, 2022, 116: 105459. doi: 10.1016/j.engappai.2022.105459http://dx.doi.org/10.1016/j.engappai.2022.105459
HUANG C, ZHANG Z Y, WANG L. PSOPruner: PSO-based deep convolutional neural network pruning method for PV module defects classification[J]. IEEE Journal of Photovoltaics, 2022, 12(6): 1550-1558. doi: 10.1109/jphotov.2022.3195099http://dx.doi.org/10.1109/jphotov.2022.3195099
FAN T, SUN T, XIE X Y, et al. Automatic micro-crack detection of polycrystalline solar cells in industrial scene[J]. IEEE Access, 2022, 10: 16269-16282. doi: 10.1109/access.2022.3145980http://dx.doi.org/10.1109/access.2022.3145980
ET-TALEBY A, CHAIBI Y, ALLOUHI A, et al. A combined convolutional neural network model and support vector machine technique for fault detection and classification based on electroluminescence images of photovoltaic modules[J]. Sustainable Energy, Grids and Networks, 2022, 32: 100946. doi: 10.1016/j.segan.2022.100946http://dx.doi.org/10.1016/j.segan.2022.100946
LI X, YANG Q, WANG J, et al. Intelligent fault pattern recognition of aerial photovoltaic module images based on deep learning technique[J]. Journal of Systemics, Cybernetics and Informatics, 2018, 16: 67-71.
ZHANG X, HOU T, HAO Y W, et al. Surface defect detection of solar cells based on multiscale region proposal fusion network[J]. IEEE Access, 2093, 9: 62093-62101.
LIU L X, ZHU Y F, RAHMAN M RUR, et al. Surface defect detection of solar cells based on feature pyramid network and GA-Faster-RCNN[C]. 2019 2nd China Symposium on Cognitive Computing and Hybrid Intelligence (CCHI). Xi’an, China. IEEE, 2019: 292-297. doi: 10.1109/cchi.2019.8901952http://dx.doi.org/10.1109/cchi.2019.8901952
ZHANG X, HAO Y W, SHANGGUAN H, et al. Detection of surface defects on solar cells by fusing Multi-channel convolution neural networks[J]. Infrared Physics and Technology, 2020, 108: 103334. doi: 10.1016/j.infrared.2020.103334http://dx.doi.org/10.1016/j.infrared.2020.103334
SU B Y, CHEN H Y, CHEN P, et al. Deep learning-based solar-cell manufacturing defect detection with complementary attention network[J]. IEEE Transactions on Industrial Informatics, 2021, 17(6): 4084-4095. doi: 10.1109/tii.2020.3008021http://dx.doi.org/10.1109/tii.2020.3008021
SU B Y, CHEN H Y, ZHOU Z. BAF-detector: an efficient CNN-based detector for photovoltaic cell defect detection[J]. IEEE Transactions on Industrial Electronics, 2022, 69(3): 3161-3171. doi: 10.1109/tie.2021.3070507http://dx.doi.org/10.1109/tie.2021.3070507
WANG J Y, ZHAO B, YAO X S. PV abnormal shading detection based on convolutional neural network[C]. 2020 Chinese Control and Decision Conference (CCDC). Hefei, China. IEEE, 2020: 1580-1583. doi: 10.1109/ccdc49329.2020.9164630http://dx.doi.org/10.1109/ccdc49329.2020.9164630
唐政,张会林,马立新. 密集主干网络算法对太阳能电池的缺陷检测[J]. 激光与光电子学进展, 2023,60(14):246-252.
TANG Z, ZHANG H L, MA L X. Defect detection for solar cells using dense backbone network algorithm[J]. Laser & Optoelectronics Progress, 2023,60(14):246-252.(in Chinese)
CHEN H Y, SONG M Y, ZHANG Z Z, et al. Detection of surface defects in solar cells by bidirectional-path feature pyramid group-wise attention detector[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 5025609. doi: 10.1109/tim.2022.3218111http://dx.doi.org/10.1109/tim.2022.3218111
ZHANG M, YIN L J. Solar cell surface defect detection based on improved YOLO v5[J]. IEEE Access, 2022, 10: 80804-80815. doi: 10.1109/access.2022.3195901http://dx.doi.org/10.1109/access.2022.3195901
陈亚芳, 廖飞, 黄新宇, 等. 多尺度YOLOv5的太阳能电池缺陷检测[J]. 光学 精密工程, 2023, 31(12): 1804-1815. doi: 10.37188/OPE.20233112.1804http://dx.doi.org/10.37188/OPE.20233112.1804
CHEN Y F, LIAO F, HUANG X Y, et al. Multi-scale YOLOv5 for solar cell defect detection[J]. Opt. Precision Eng., 2023, 31(12): 1804-1815.(in Chinese). doi: 10.37188/OPE.20233112.1804http://dx.doi.org/10.37188/OPE.20233112.1804
BALC? O? LU Y S, SEZEN B, CUBUKCU CERASI C. Solar cell busbars surface defect detection based on deep convolutional neural network[J]. IEEE Latin America Transactions, 2023, 21(2): 242-250. doi: 10.1109/tla.2023.10015216http://dx.doi.org/10.1109/tla.2023.10015216
XIE X Y, LIU H, NA Z X, et al. DPiT: detecting defects of photovoltaic solar cells with image transformers[J]. IEEE Access, 2021, 9: 154292-154303. doi: 10.1109/access.2021.3119631http://dx.doi.org/10.1109/access.2021.3119631
JUMABOEV S, JURAKUZIEV D, LEE M. Photovoltaics plant fault detection using deep learning techniques[J]. Remote Sensing, 2022, 14(15): 3728. doi: 10.3390/rs14153728http://dx.doi.org/10.3390/rs14153728
WANG C H, CHEN H Y, ZHAO S S, et al. Efficient and refined deep convolutional features network for the crack segmentation of solar cell electroluminescence images[J]. IEEE Transactions on Semiconductor Manufacturing, 2022, 35(4): 610-619. doi: 10.1109/tsm.2022.3197933http://dx.doi.org/10.1109/tsm.2022.3197933
王延年, 刘宏涛, 刘航宇, 等. 基于改进U-Net的太阳能电池图像缺陷检测方法[J]. 电子测量技术, 2021, 44(14): 117-121.
WANG Y N, LIU H T, LIU H Y, et al. Solar cell image defect detection method based on improved U-Net[J]. Electronic Measurement Technology, 2021, 44(14): 117-121.(in Chinese)
RAHMAN M R U, CHEN H Y. Defects inspection in polycrystalline solar cells electroluminescence images using deep learning[J]. IEEE Access, 2020, 8: 40547-40558. doi: 10.1109/access.2020.2976843http://dx.doi.org/10.1109/access.2020.2976843
王盛, 吴浩, 彭宁, 等. 改进U2-Net的太阳能电池片缺陷分割方法[J]. 国外电子测量技术, 2023, 42(2): 177-184.
WANG S, WU H, PENG N, et al. Improved U2-Net defect segmentation method for solar cells[J]. Foreign Electronic Measurement Technology, 2023, 42(2): 177-184.(in Chinese)
BALZATEGUI J, ECIOLAZA L, ARANA-AREXOLALEIBA N. Defect detection on polycrystalline solar cells using electroluminescence and fully convolutional neural networks[C]. 2020 IEEE/SICE International Symposium on System Integration (SII). Honolulu, HI, USA. IEEE, 2020: 949-953. doi: 10.1109/sii46433.2020.9026211http://dx.doi.org/10.1109/sii46433.2020.9026211
SOHAIL A, ISLAM NUL, UL HAQ A, et al. Fault detection and computation of power in PV cells under faulty conditions using deep-learning[J]. Energy Reports, 2023, 9: 4325-4336. doi: 10.1016/j.egyr.2023.03.094http://dx.doi.org/10.1016/j.egyr.2023.03.094
TIAN S S, LI W J, LI S, et al. Image defect detection and segmentation algorithm of solar cell based on convolutional neural network[C]. 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). Xi’an, China. IEEE, 2021: 154-157. doi: 10.1109/icsp51882.2021.9408827http://dx.doi.org/10.1109/icsp51882.2021.9408827
OTAMENDI U, MARTINEZ I, QUARTULLI M, et al. Segmentation of cell-level anomalies in electroluminescence images of photovoltaic modules[J]. Solar Energy, 2021, 220: 914-926. doi: 10.1016/j.solener.2021.03.058http://dx.doi.org/10.1016/j.solener.2021.03.058
CHEN H, ZHANG A, GONG C Y, et al. Fault diagnosis method for photovoltaic panels based on improved ShuffleNet V2 and infrared images[C]. 2022 7th International Conference on Power and Renewable Energy (ICPRE). Shanghai, China. IEEE, 2022: 447-451. doi: 10.1109/icpre55555.2022.9960396http://dx.doi.org/10.1109/icpre55555.2022.9960396
史册, 南新元. 改进InceptionV3与迁移学习的太阳能电池板缺陷识别[J]. 计算机工程与科学, 2023, 45(4): 646-653. doi: 10.3969/j.issn.1007-130X.2023.04.011http://dx.doi.org/10.3969/j.issn.1007-130X.2023.04.011
SHI C, NAN X Y. Improved InceptionV3 and transfer learning for solar panel defect recognition[J]. Computer Engineering & Science, 2023, 45(4): 646-653.(in Chinese). doi: 10.3969/j.issn.1007-130X.2023.04.011http://dx.doi.org/10.3969/j.issn.1007-130X.2023.04.011
刘怀广, 丁晚成, 黄千稳. 基于轻量化卷积神经网络的光伏电池片缺陷检测方法研究[J]. 应用光学, 2022, 43(1): 87-94. doi: 10.5768/jao202243.0103003http://dx.doi.org/10.5768/jao202243.0103003
LIU H G, DING W C, HUANG Q W. Defects detection method of photovoltaic cells based on lightweight convolutional neural network[J]. Journal of Applied Optics, 2022, 43(1): 87-94.(in Chinese). doi: 10.5768/jao202243.0103003http://dx.doi.org/10.5768/jao202243.0103003
ZHANG J X, CHEN X Y, WEI H K, et al. A lightweight network for photovoltaic cell defect detection in electroluminescence images based on neural architecture search and knowledge distillation[EB/OL]. 2023: arXiv: 2302.07455. http://arxiv.org/abs/2302.07455http://arxiv.org/abs/2302.07455. doi: 10.1016/j.apenergy.2023.122184http://dx.doi.org/10.1016/j.apenergy.2023.122184
王云艳, 周志刚, 罗帅. 基于数据增强的太阳能电池片缺陷检测[J]. 电子测量与仪器学报, 2021, 35(1): 26-32.
WANG Y Y, ZHOU Z G, LUO S. Defect detection of solar cell based on data augmentation[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(1): 26-32.(in Chinese)
文熙. 基于生成对抗网络的太阳能电池缺陷数据增强与缺陷检测[D]. 天津: 河北工业大学, 2020.
WEN X. Data Augmentation and Defect Detection of Solar Cells Based on Generative Adversarial Network[D]. Tianjin: Hebei University of Technology, 2020. (in Chinese)
BALZATEGUI J, ECIOLAZA L, MAESTRO-WATSON D. Anomaly detection and automatic labeling for solar cell quality inspection based on generative adversarial network[J]. Sensors, 2021, 21(13): 4361. doi: 10.3390/s21134361http://dx.doi.org/10.3390/s21134361
李梦园. 深度学习算法在表面缺陷识别中的应用研究[D]. 杭州: 浙江工业大学, 2015.
LI M Y. Research and Application of Deep Learning Algorithm in Surface Defect Recognition[D]. Hangzhou: Zhejiang University of Technology, 2015. (in Chinese)
NI B B, ZOU P G, LI Q, et al. Intelligent defect detection method of photovoltaic modules based on deep learning[C]. Proceedings of the 2018 International Conference on Transportation & Logistics, Information & Communication, Smart City (TLICSC 2018). October 30-31, 2018. Chengdu City, China. Paris, France: Atlantis Press, 2018: 167-173.
QIAN X L, LI J, ZHANG J W, et al. Micro-crack detection of solar cell based on adaptive deep features and visual saliency[J]. Sensor Review, 2020, 40(4): 385-396. doi: 10.1108/sr-05-2019-0124http://dx.doi.org/10.1108/sr-05-2019-0124
QIAN X L, LI J, CAO J D, et al. Micro-cracks detection of solar cells surface via combining short-term and long-term deep features[J]. Neural Networks, 2020, 127: 132-140. doi: 10.1016/j.neunet.2020.04.012http://dx.doi.org/10.1016/j.neunet.2020.04.012
MAYR M, HOFFMANN M, MAIER A, et al. Weakly supervised segmentation of cracks on solar cells using normalized Lp norm[C]. 2019 IEEE International Conference on Image Processing (ICIP). Taipei, China. IEEE, 2019: 1885-1889. doi: 10.1109/icip.2019.8803116http://dx.doi.org/10.1109/icip.2019.8803116
CHEN H Y, HU Q D, ZHAI B S, et al. A robust weakly supervised learning of deep Conv-Nets for surface defect inspection[J]. Neural Computing and Applications, 2020, 32(15): 11229-11244. doi: 10.1007/s00521-020-04819-5http://dx.doi.org/10.1007/s00521-020-04819-5
LU F F, NIU R, ZHANG Z H, et al. A generative adversarial network-based fault detection approach for photovoltaic panel[J]. Applied Sciences, 2022, 12(4): 1789. doi: 10.3390/app12041789http://dx.doi.org/10.3390/app12041789
PIERDICCA R, PAOLANTI M, FELICETTI A, et al. Automatic faults detection of photovoltaic farms: solAIr, a deep learning-based system for thermal images[J]. Energies, 2020, 13(24): 6496. doi: 10.3390/en13246496http://dx.doi.org/10.3390/en13246496
BUERHOP-LUTZ C, DEITSCH S, MAIER A, et al. A benchmark for visual identification of defective solar cells in electroluminescence imagery[C]. 35th European PV Solar Energy Conference and Exhibition. Brussels: The European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC), 2018: 1287-1289.
DEITSCH S, BUERHOP-LUTZ C, SOVETKIN E, et al. Segmentation of photovoltaic module cells in uncalibrated electroluminescence images[J]. Machine Vision and Applications, 2021, 32(4): 84. doi: 10.1007/s00138-021-01191-9http://dx.doi.org/10.1007/s00138-021-01191-9
RODRIGUEZ A R, HOLICZA B, NAGY A M, et al. Segmentation and error detection of PV modules[C]. 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA). Stuttgart, Germany. IEEE, 2022: 1-4. doi: 10.1109/etfa52439.2022.9921572http://dx.doi.org/10.1109/etfa52439.2022.9921572
PRATT L, MATTHEUS J, KLEIN R. A benchmark dataset for defect detection and classification in electroluminescence images of PV modules using semantic segmentation[J]. Systems and Soft Computing, 2023, 5: 200048. doi: 10.1016/j.sasc.2023.200048http://dx.doi.org/10.1016/j.sasc.2023.200048
FRENCH R H, KARIMI A M, BRAID J L. Electroluminescent (EL) image dataset of PV module under step-wise damp heat exposures[EB/OL]. [2023-06-11]. https://doi.org/10.17605/OSF.IO/4QRTVhttps://doi.org/10.17605/OSF.IO/4QRTV
SU B Y, ZHOU Z, CHEN H Y. PVEL-AD: a large-scale open-world dataset for photovoltaic cell anomaly detection[J]. IEEE Transactions on Industrial Informatics, 2023, 19(1): 404-413. doi: 10.1109/tii.2022.3162846http://dx.doi.org/10.1109/tii.2022.3162846
MILLENDORF M, OBROPTA E, VADHAVKAR N. Infrared solar module dataset for anomaly detection[C]. 8th International Conference on Learning Representations. Addis Ababa: International Conference on Learning Representations (ICLR), 2015: 1-9.
FONSECA ALVES R H, JrDE DEUS G A, MARRA E G, et al. Automatic fault classification in photovoltaic modules using Convolutional Neural Networks[J]. Renewable Energy, 2021, 179: 502-516. doi: 10.1016/j.renene.2021.07.070http://dx.doi.org/10.1016/j.renene.2021.07.070
CHEN X, KARIN T, LIBBY C, et al. Automatic crack segmentation and feature extraction in electroluminescence images of solar modules[J]. IEEE Journal of Photovoltaics, 2023, 13(3): 334-342. doi: 10.1109/jphotov.2023.3249970http://dx.doi.org/10.1109/jphotov.2023.3249970
CHEN X, KARIN T, JAIN A. Automated defect identification in electroluminescence images of solar modules[J]. Solar Energy, 2022, 242: 20-29. doi: 10.1016/j.solener.2022.06.031http://dx.doi.org/10.1016/j.solener.2022.06.031
0
浏览量
117
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构