浏览全部资源
扫码关注微信
1.江苏理工学院 机械工程学院,江苏 常州 213001
2.常州祥明智能动力股份有限公司,江苏 常州 213011
[ "巢 渊(1988-),男,江苏常州人,工学博士,副教授,硕士研究生导师,2011年、2017年于东南大学分别获得学士、博士学位主要从事机器视觉测量与检测、机电一体化装备智能控制技术等研究。E-mail: chaoyuan@jsut.edu.cn" ]
纸质出版日期:2024-03-25,
收稿日期:2023-08-22,
修回日期:2023-10-12,
移动端阅览
巢渊,徐魏,刘文汇等.基于改进灰狼优化算法的QFN芯片图像多阈值分割方法[J].光学精密工程,2024,32(06):930-944.
CHAO Yuan,XU Wei,LIU Wenhui,et al.Multi-threshold image segmentation method of QFN chip based on improved grey wolf optimization[J].Optics and Precision Engineering,2024,32(06):930-944.
巢渊,徐魏,刘文汇等.基于改进灰狼优化算法的QFN芯片图像多阈值分割方法[J].光学精密工程,2024,32(06):930-944. DOI: 10.37188/OPE.20243206.0930.
CHAO Yuan,XU Wei,LIU Wenhui,et al.Multi-threshold image segmentation method of QFN chip based on improved grey wolf optimization[J].Optics and Precision Engineering,2024,32(06):930-944. DOI: 10.37188/OPE.20243206.0930.
在QFN芯片封装缺陷检测中,增加图像分割环节可有效提高缺陷检测准确性与检测效率。针对图像分割中传统算法效率低、智能优化算法分割精度低稳定性差的问题,本文提出一种基于改进灰狼优化算法(IGWO)的图像多阈值分割方法。首先,改进原始灰狼优化算法非线性因子,平衡算法搜索效率与挖掘能力;其次,引入反向学习策略提高种群整体质量,引入正弦函数、调整头狼权重以改进灰狼更新策略,增强算法多样性与挖掘能力;然后,提出头狼靠拢与种群变异交替进行的位置更新策略,平衡算法收敛性能与跳出局部最优能力;最后,以Kapur熵为适应度函数,求解最优分割阈值。将本文提出的改进灰狼优化算法的多阈值图像分割方法,与灰狼优化算法(GWO)、基于翻筋斗觅食策略的灰狼优化算法(DSF-GWO)、基于莱维飞行的樽海鞘群优化算法(LSSA)、改进北方苍鹰算法(INGO)的图像分割方法进行实验对比,结果表明:本文方法在分割用时方面,约为DSF-GWO的1/2,INGO的1/4;在分割精度与稳定性方面,在进行QFN芯片缺陷图像的连续30次分割时,本文方法具有最大Kapur熵平均值、最小标准差与最短分割时间。因此本文方法可实现高精度、高稳定性与高效率的QFN芯片图像多阈值分割。
In the process of QFN chip surface defect detection, the accuracy and efficiency of defect detection can be effectively improved by adding the image segmentation step. In view of the low efficiency of traditional image segmentation and the limitations of low precision and poor stability of image segmentation based on intelligent optimization algorithms, this paper proposed a multi-threshold image segmentation method based on Improved Grey Wolf Optimization (IGWO) algorithm. Firstly, the nonlinear factor in the original GWO algorithm was improved to balance the searching efficiency and mining ability of the algorithm. Secondly, the opposition-based learning was introduced to improve the overall quality of the population, and the sine function and the weight of the head Wolf were introduced to improve the grey wolf updating strategy, so as to enhance the diversity and mining ability of the algorithm. Then, the head wolf approach strategy and population mutation strategy were proposed to update the wolf position, so as to balance the convergence performance and the ability to jump out of the local optimal of the algorithm. Finally, Kapur entropy was used as fitness function to obtain the optimal segmentation threshold. The proposed method was compared with the Grey Wolf Optimization algorithm (GWO), the Grey Wolf Optimization algorithm based on Disturbance and Somersault Foraging (DSF-GWO), Levy Flight Trajectory-based Salp Swarm Algorithm (LSSA), and the image segmentation method of the improved Northern Goshawk algorithm(INGO)in the experiments. The experimental results show that: In terms of segmentation time, the proposed method is about 1/2 that of DSF-GWO and 1/4 that of INGO. In terms of segmentation accuracy and stability, for 30 times of QFN chip defect images segmentation, the average Kapur entropy obtained by the proposed method is the largest, and the standard deviation is the smallest. Therefore, the proposed method can realize multi-threshold segmentation of QFN images with high accuracy, high stability and high efficiency.
灰狼优化算法多阈值分割Kapur熵QFN
Grey Wolf Optimization(GWO)multi-threshold segmentationKapur entropyQuad Flat No-lead package(QFN)
CHEN K, ZHANG Z S, CHAO Y, et al. Defects extraction for QFN based on mathematical morphology and modified region growing[C]. 2015 IEEE International Conference on Mechatronics and Automation (ICMA). Beijing, China. IEEE, 2015: 2426-2430. doi: 10.1109/icma.2015.7237867http://dx.doi.org/10.1109/icma.2015.7237867
赵朗月, 吴一全. 基于机器视觉的表面缺陷检测方法研究进展[J]. 仪器仪表学报, 2022, 43(1): 198-219.
ZHAO L Y, WU Y Q. Research progress of surface defect detection methods based on machine vision[J]. Chinese Journal of Scientific Instrument, 2022, 43(1): 198-219.(in Chinese)
YANG X, YIN C, DADRAS S, et al. Spacecraft damage infrared detection algorithm for hypervelocity impact based on double-layer multi-target segmentation[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(4): 571-586. doi: 10.1631/fitee.2000695http://dx.doi.org/10.1631/fitee.2000695
ZHANG D J, LI Q Q, CHEN Y, et al. An efficient and reliable coarse-to-fine approach for asphalt pavement crackdetection[J]. Image and Vision Computing, 2017, 57: 130-146. doi: 10.1016/j.imavis.2016.11.018http://dx.doi.org/10.1016/j.imavis.2016.11.018
赵泉华, 高郡, 李玉. 基于区域划分的多特征纹理图像分割[J]. 仪器仪表学报, 2015, 36(11): 2519-2530. doi: 10.3969/j.issn.0254-3087.2015.11.016http://dx.doi.org/10.3969/j.issn.0254-3087.2015.11.016
ZHAO Q H, GAO J, LI Y. Multi-feature texture image segmentation based on tessellation technique[J]. Chinese Journal of Scientific Instrument, 2015, 36(11): 2519-2530.(in Chinese). doi: 10.3969/j.issn.0254-3087.2015.11.016http://dx.doi.org/10.3969/j.issn.0254-3087.2015.11.016
WANG S, LIU X Q, YANG T F, et al. Panoramic crack detection for steel beam based on structured random forests[J]. IEEE Access, 2018, 6: 16432-16444. doi: 10.1109/access.2018.2812141http://dx.doi.org/10.1109/access.2018.2812141
黄梦涛, 连一鑫. 基于改进Canny算子的锂电池极片表面缺陷检测[J]. 仪器仪表学报, 2021, 42(10): 199-209.
HUANG M T, LIAN Y X. Lithium battery electrode plate surface defect detection based on improved Canny operator[J]. Chinese Journal of Scientific Instrument, 2021, 42(10): 199-209.(in Chinese)
马云鹏, 李庆武, 何飞佳, 等. 金属表面缺陷自适应分割算法[J]. 仪器仪表学报, 2017, 38(1): 245-251. doi: 10.3969/j.issn.0254-3087.2017.01.032http://dx.doi.org/10.3969/j.issn.0254-3087.2017.01.032
MA Y P, LI Q W, HE F J, et al. Adaptive segmentation algorithm for metal surface defects[J]. Chinese Journal of Scientific Instrument, 2017, 38(1): 245-251.(in Chinese). doi: 10.3969/j.issn.0254-3087.2017.01.032http://dx.doi.org/10.3969/j.issn.0254-3087.2017.01.032
WANG S, WANG H Y, YANG F, et al. Attention-based deep learning for chip-surface-defect detection[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121(3): 1957-1971. doi: 10.1007/s00170-022-09425-4http://dx.doi.org/10.1007/s00170-022-09425-4
陈恺, 陈芳, 戴敏, 等. 基于萤火虫算法的二维熵多阈值快速图像分割[J]. 光学 精密工程, 2014, 22(2): 517-523. doi: 10.3788/ope.20142202.0517http://dx.doi.org/10.3788/ope.20142202.0517
CHEN K, CHEN F, DAI M, et al. Fast image segmentation with multilevel threshold of two-dimensional entropy based on firefly algorithm[J]. Opt. Precision Eng., 2014, 22(2): 517-523.(in Chinese). doi: 10.3788/ope.20142202.0517http://dx.doi.org/10.3788/ope.20142202.0517
NING G Y. Two-dimensional Otsu multi-threshold image segmentation based on hybrid whale optimization algorithm[J]. Multimedia Tools and Applications, 2023, 82(10): 15007-15026. doi: 10.1007/s11042-022-14041-1http://dx.doi.org/10.1007/s11042-022-14041-1
王正通, 程凤芹, 尤文, 等. 基于翻筋斗觅食策略的灰狼优化算法[J]. 计算机应用研究, 2021, 38(5): 1434-1437.
WANG Z T, CHENG F Q, YOU W, et al. Grey wolf optimization algorithm based on somersault foraging strategy[J]. Application Research of Computers, 2021, 38(5): 1434-1437.(in Chinese)
NADIMI-SHAHRAKI M H, TAGHIAN S, MIRJALILI S. An improved grey wolf optimizer for solving engineering problems[J]. Expert Systems with Applications, 2021, 166: 113917. doi: 10.1016/j.eswa.2020.113917http://dx.doi.org/10.1016/j.eswa.2020.113917
MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. doi: 10.1016/j.advengsoft.2013.12.007http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
付雪, 朱良宽, 黄建平, 等. 基于改进的北方苍鹰优化算法的多阈值图像分割[J]. 计算机工程, 2023,49(07):232-241.
FU X, ZHU L K, HUANG J P, et al. Multi-threshold image segmentation based on improved northern goshawk optimization[J]. Computer Engineering, 2022: 1-11. (in Chinese)
KULLBACK S, LEIBLER R A. On information and sufficiency[J]. The Annals of Mathematical Statistics, 1951, 22(1): 79-86. doi: 10.1214/aoms/1177729694http://dx.doi.org/10.1214/aoms/1177729694
吴一全, 张晓杰, 吴诗婳. 2维对称交叉熵图像阈值分割[J]. 中国图象图形学报, 2011, 16(8): 1393-1401. doi: 10.11834/jig.100099http://dx.doi.org/10.11834/jig.100099
WU Y Q, ZHANG X J, WU S H. Two-dimensional symmetric cross-entropy image thresholding[J]. Journal of Image and Graphics, 2011, 16(8): 1393-1401.(in Chinese). doi: 10.11834/jig.100099http://dx.doi.org/10.11834/jig.100099
邢致恺, 贾鹤鸣, 宋文龙. 基于莱维飞行樽海鞘群优化算法的多阈值图像分割[J]. 自动化学报, 2021, 47(2): 363-377.
XING Z K, JIA H M, SONG W L. Levy flight trajectory-based salp swarm algorithm for multilevel thresholding image segmentation[J]. Acta Automatica Sinica, 2021, 47(2): 363-377.(in Chinese)
巢渊, 戴敏, 陈恺, 等. 基于广义反向粒子群与引力搜索混合算法的多阈值图像分割[J]. 光学 精密工程, 2015, 23(3): 879. doi: 10.3788/ope.20152303.0879http://dx.doi.org/10.3788/ope.20152303.0879
CHAO Y, DAI M, CHEN K, et al. Image segmentation of multilevel threshold using hybrid PSOGSA with generalized opposition-based learning[J]. Opt. Precision Eng., 2015, 23(3): 879.(in Chinese). doi: 10.3788/ope.20152303.0879http://dx.doi.org/10.3788/ope.20152303.0879
KAPUR J N, SAHOO P K, WONG A K C. A new method for gray-level picture thresholding using the entropy of the histogram[J]. Computer Vision, Graphics, and Image Processing, 1985, 29(3): 273-285. doi: 10.1016/0734-189x(85)90125-2http://dx.doi.org/10.1016/0734-189x(85)90125-2
PAL N R, PAL S K. Object-background segmentation using new definitions of entropy[J]. IEE Proceedings E-Computers and Digital Techniques, 1989, 136(4): 284. doi: 10.1049/ip-e.1989.0039http://dx.doi.org/10.1049/ip-e.1989.0039
TIZHOOSH H R. Opposition-based reinforcement learning[J]. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2006, 10(4): 578-585. doi: 10.20965/jaciii.2006.p0578http://dx.doi.org/10.20965/jaciii.2006.p0578
YAO X, LIU Y, LIN G M. Evolutionary programming made faster[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(2): 82-102. doi: 10.1109/4235.771163http://dx.doi.org/10.1109/4235.771163
JING Z C, YE J T, XU G L. A geometric flow approach for region-based image segmentation-theoretical analysis[J]. Acta Mathematicae Applicatae Sinica, English Series, 2018, 34(1): 65-76. doi: 10.1007/s10255-018-0723-4http://dx.doi.org/10.1007/s10255-018-0723-4
李玉, 崔书琳, 赵泉华.基于优化RDD分区的Spark并行K-Means大尺度遥感图像分割[J]. 控制与决策, 2023: 1-8.
LI Y, CUI S L, ZHAO Q H. Spark Parallel K-Means Large Scale Remote Sensing Image Segmentation Based on Optimized RDD Partition[J]. Control and Decision, 2023: 1-8. (in Chinese)
张大明, 徐嘉庆, 赵彦清, 等. 基于停滞检测的双向搜索灰狼优化算法[J]. 计算机应用研究, 2022, 39(6): 1725-1730.
ZHANG D M, XU J Q, ZHAO Y Q, et al. Bidirectional search grey wolf optimizer based on stagnation detection[J]. Application Research of Computers, 2022, 39(6): 1725-1730.(in Chinese)
ZHAO D, LIU L, YU F, et al. Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy[J]. Knowledge-Based Systems, 2021, 216: 106510. doi: 10.1016/j.knosys.2020.106510http://dx.doi.org/10.1016/j.knosys.2020.106510
ABDEL-BASSET M, MOHAMED R, ABOUHAWWASH M. A new fusion of whale optimizer algorithm with Kapur's entropy for multi-threshold image segmentation: analysis and validations[J]. Artificial Intelligence Review, 2022, 55(8): 6389-6459. doi: 10.1007/s10462-022-10157-whttp://dx.doi.org/10.1007/s10462-022-10157-w
0
浏览量
14
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构