浏览全部资源
扫码关注微信
西北工业大学 自动化学院,陕西 西安,710072
收稿日期:2009-04-09,
修回日期:2010-02-24,
网络出版日期:2010-08-20,
纸质出版日期:2010-08-20
移动端阅览
张大奇, 曲仕茹, 何 力. 路面病害检测系统中的图像增强技术[J]. 光学精密工程, 2010,18(8): 1869-1876
ZHANG Da-qi, QU Shi-ru, HE Li. Application of automatic image enhancing technique to road defect detection systems[J]. 光学精密工程, 2010,18(8): 1869-1876
张大奇, 曲仕茹, 何 力. 路面病害检测系统中的图像增强技术[J]. 光学精密工程, 2010,18(8): 1869-1876 DOI: 10.3788/OPE.20101808.1869.
ZHANG Da-qi, QU Shi-ru, HE Li. Application of automatic image enhancing technique to road defect detection systems[J]. 光学精密工程, 2010,18(8): 1869-1876 DOI: 10.3788/OPE.20101808.1869.
为了提高路面病害检测系统的精度和自适应能力
研究了自动路面裂缝图像增强技术。针对图像每个像素建立由邻域一致性模糊熵测度、邻域模糊方差以及全局模糊隶属度组成的模糊特征模式对所有像素进行分类
实现对像素灰度渡越点位置的准确估计;在模糊隶属度函数设计上
利用修改控制顶点和权因子可局部地修改曲线形状的功能
通过非均匀有理B样条函数设计出一种双"S"形模糊隶属度函数作为灰度变换函数。提出的路面裂缝图像增强技术中的灰度变换函数不仅能和渡越点的位置很好地结合
而且其形状调节因子具备良好的灰度集中能力
仅需很少次数迭代增强就能达到突出路面裂纹的效果。实验结果显示
利用提出的图像增强技术可使路面裂缝病害像素正确检测率达到95%
该技术很大程度地提高了路面裂缝自动检测系统的可靠性和检测精度。
In order to improve precision and adaptive capability of road defect detection system
an image enhancement technique for automatic road defect is investigated. To estimate the crossover points of gray transform
a new 3-D pattern formed with two local features of the neighborhood of each pixel and one global feature based fuzzy measurement is constructed for pixel classification. In design of a fuzzy membership function with image enhancement ability
the Non-uniform Rational B-Splines(NURBS) is used to produce a double S shape fuzzy membership function as the gray transform function. The gray transform function can easily be united with the crossover points perfectly and its designable shape can offer capability of gray level centralization. Therefore
the method can obtain the road crack only by a few operations of iteration and enhancement. Experimental results testify that this adaptive technique can provide satisfactory enhancement effects and the detection accuracy of road crack region pixels reaches 95%. The proposed technique shows better reliability and precision for road defect detection systems.
WANG K C P. Designs and implementations of automated systems for pavement surface distress survey[J]. Journal of Infrastructure Systems, 2000,6(1):24-32.
LI L, CHAN P, LYTTON R L. Images detection of thin cracks on noisy pavement[J]. Transportation Research Record, 1991,1311:131-135.
蒋彬,刘淑荣. 基于图象识别的公路路面破损自动检测研究进展[J]. 东北公路, 2002,25(3):19-21.
JIANG B, LIU SH R. Development of research on pavement distress automatic inspection based on image identify[J]. Northeastern Highway, 2002,25(3):19-21. (in Chinese)
CHOU J C, ONEIL W A. Pavement distress evaluation using fuzzying logic and moment invariants . Transportation Research Record, 1505, Transportation Research Board, Washington D C:144-148.
王荣本,王超,初秀民. 路面破损图像识别研究进展[J]. 吉林大学学报(工学版), 2002,32(4):91-96.
WANG R B, WANG CH, CHU X M. Developments of research on road pavement surface distress image recognition[J]. Journal of Jilin University(Engineering and Technology Edition), 2002,32(4):91-96. (in Chinese)
PAL S K, KING R A. Image enhancement using fuzzy sets[J]. Electronics Letters, 1980,16(9):376-378.
CHENG H D, CHEN J R, GLAZIER C, et al. Novel approach to pavement distress detection based on fuzzy set theory[J]. Journal of Computing in Civil Engineering, 1999,13(4):270-280. (in Chinese)
李仕,张葆,孙辉. 航空多重模糊图像的恢复[J]. 光学精密工程, 2009,17(5):1161-1170.
LI SH, ZHANG B, SUN H. Restoration of aerial multiple blurred images[J]. Opt. Precision Eng., 2009,17(5):1161-1170.
张坤华,杨但. 应用聚类和分形实现复杂背景下的扩展目标分割[J]. 光学精密工程, 2009,17(7):1665-1671.
ZHANG K H, YANG D. Segmentation for extended target in complex backgrounds based on clustering and fractal[J]. Opt. Precision Eng., 2009,17(7):1665-1671.(in Chinese)
陈平,潘晋孝,刘宾. CT图像边缘退化模型的建立及其在图像尺寸测量中的应用[J]. 光学精密工程, 2009,17(9):2269-2275.
CHEN P, PAN J X, LIU B. Computed tomography image edge degradation model and its application to image size measurement[J]. Opt. Precision Eng., 2009,17(9):2269-2275.(in Chinese)
唐磊,赵春霞,王鸿南,等. 一种自适应路面图像模糊增强算法[J]. 光子学报, 2007,36(10):1943-1948.
TANG L, ZHAO CH X, WANG H N, et al.. An adaptive fuzzy enhancement algorithm for road surface images[J]. Acta Photonica Sinica, 2007,36(10):1943-1948. (in Chinese)
乐宁, 梁学军, 翁世修. 图像过渡区算法及其改进[J]. 红外与毫米波学报, 2001,20(3):211-214.
LE N, LIANG X J, WENG SH X. The algorithm of image transition region and its improvement[J]. Journal of Infared and Millimeter Waves, 2001,20(3):211-214.(in Chinese)
施法中. 计算机辅助几何设计与非均匀有理B样条[M]. 北京: 高等教育出版社, 2001.
SHI F ZH. CAGD & NURBS[M]. Beijing: Higher Education Press, 2001.(in Chinese)
0
浏览量
486
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构