浏览全部资源
扫码关注微信
国防科技大学 机电工程与自动化学院,湖南 长沙,410072
收稿日期:2009-11-26,
修回日期:2009-12-28,
网络出版日期:2010-08-20,
纸质出版日期:2010-08-20
移动端阅览
孙慧贤, 张玉华, 罗飞路. 局部Walsh谱描述图像纹理特征的旋转不变性[J]. 光学精密工程, 2010,18(8): 1886-1895
SUN Hui-xian, ZHANG Yu-hua, LUO Fei-lu. Description of rotation invariant texture image with local Walsh spectrum[J]. 光学精密工程, 2010,18(8): 1886-1895
孙慧贤, 张玉华, 罗飞路. 局部Walsh谱描述图像纹理特征的旋转不变性[J]. 光学精密工程, 2010,18(8): 1886-1895 DOI: 10.3788/OPE.20101808.1886.
SUN Hui-xian, ZHANG Yu-hua, LUO Fei-lu. Description of rotation invariant texture image with local Walsh spectrum[J]. 光学精密工程, 2010,18(8): 1886-1895 DOI: 10.3788/OPE.20101808.1886.
为了有效地进行纹理分析
提出一种基于局部Walsh谱的纹理特征旋转不变性描述方法。首先
比较每个像素点与其邻近点的灰度值生成局部二值序列
并计算序列离散Walsh变换的功率谱;然后
采用功率谱的各谱点值构成特征直方图描述纹理特征;最后
从序列的列率特性出发
构造了新的两族局部Walsh谱
揭示了局部Walsh谱与局部二值模式之间的联系。因为离散Walsh变换功率谱具有循环移位不变性
所以局部Walsh谱具有先天的旋转不变性。实验结果显示
与灰度共生矩阵和Gabor滤波器组相比
局部Walsh谱的纹理分类准确率较高;与局部二值模式相比
在相同尺度下局部Walsh谱的分类准确率比其高出3%以上
对两幅旋转纹理图像分割的错误率比其低11%和3%
表明提出的方法具有较好的纹理鉴别能力和旋转不变性。
In order to analyze the image texture effectively
the new rotation invariant and multiresolution texture descriptors are proposed based on Local Walsh Spectrum (LWS). Firstly
the Local Binary Sequence (LBS) of each pixel is obtained by comparing its gray-scale with neighboring points and the power spectrum of Discrete Walsh Transform (DWT) of the LBS is calculated. Then
the spectrums value in the power spectrum is expressed in characteristic histogram to describe the texture feature. Finally
based on the sequency characteristic of LBS
the Two-family Sequency LWS (TSLWS) is proposed to reveal the relationship between LWS and Local Binary Pattern (LBP).Because of the circular-shift-invariant of DWT power spectrum
the proposed texture descriptors show prior rotation invariance. Experimental results indicate that the texture classification precisions of LWS are better than those of the Gray Level Co-occurrence Matrix (GLCM) method and Gabor filter bank method. Furthermore
as compared with the LBP
the texture classification precision of the LWS is 3% higher than that of LBP in the same local neighborhood and the segmentation in inaccuracies of the LWS are 11% and 23% respectively less than those of LBP for two rotated mosaic texture images
which proves that the proposed method has better abilities of texture discrimination and rotation invariance.
姜永林, 屈桢深, 王常虹. 基于纹理及统计特征的视频背景提取[J]. 光学精密工程, 2008,16(1):172-177.
JIANG Y L, QU ZH SH, WANG CH H. Video background extraction based on textural and statistical features [J]. Opt. Precision Eng., 2008,16(1):172-177. (in Chinese)
王玮, 黄非非, 李见为,等. 使用多尺度LBP 特征描述与识别人脸[J]. 光学精密工程, 2008,16(4):696-705.
WANG W, HUANG F F, LI J W, et al.. Face description and recognition using multiscale LBP feature[J]. Opt. Precision Eng., 2008,16(4):696-705. (in Chinese)
汪华章, 何小海, 宰文姣. 基于局部和全局特征融合的图像检索[J]. 光学精密工程, 2008,16(6):1098-1104.
WANG H ZH, HE X H, ZAI W J. Image retrieval based on combining local and global features[J]. Opt. Precision Eng., 2008,16(6):1098-1104. (in Chinese)
HAN Y F, SHI P F. An adaptive level-selecting wavelet transform for texture [J]. Image and Vision Computing, 2007,25(1):1239-1248.
OJALA T, PIETIKAINEN M. Unsupervised texture segmentation using feature distributions[J]. Pattern Recognition, 1999,32(2):477-486.
OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,249(17):971-987.
HEIKKILA M, PIETIKAINEN M, SCHMID C. Description of interest regions with local binary patterns[J]. Pattern Recognition, 2009,42(1):425-436.
蔡蕾, 王珂, 张立保. 基于局部二值模式的医学图像检索[J]. 光电子激光, 2008,19(1):104-106.
CAI L, WANG K, ZHANG L B. Medical image retrieval based on local binary patterns [J]. Journal of OptoelectronicsLaser, 2008,19(1):104-106. (in Chinese)
AHONEN T, HADID A, PIETIKAINEN M. Face description with local binary patterns: application to face recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006,28(12):2037-2041.
ZHOU H, WANG R S, WANG C. A novel extended local-binary-pattern operator for texture analysis[J]. Information Sciences, 2008,178(2):4314-4325.
张志龙, 鲁新平, 沈振康,等. 基于LWT的纹理特征提取方法[J]. 国防科技大学学报, 2005,27(3):86-91.
ZHANG ZH L, LU X P, SHEN ZH K, et al.. A texture feature extraction method based on local Walsh transform [J]. Journal of National University Defense Technology, 2005,27(3):86-91. (in Chinese)
NASSIRI M J, VAFAEI A, MONADJEMI A. Texture feature extraction using Slant-Hadamard transform . Proceeding of World Academy of Science, Engineering and Technology, 2006,17:40-44.
POESIO P. Walsh spectral analysis of binary signals arising from intermittent two-phase flows[J]. International Journal of Multiphase Flow, 2008,34(1):516-522.
HONEYCUTT C E, PLOTNICK R. Image analysis techniques and gray-level co-occurrence matrices(GLCM) for calculating bioturbation indices and characterizing biogenic sedimentary structures[J]. Computers & Geosciences, 2008,34(1):1461-1472.
MANJUNATH B S, MA W. Texture features for browsing and retrieval of image data[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18(8):837-842.
0
浏览量
490
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构