浏览全部资源
扫码关注微信
东南大学 MEMS教育部重点实验室,江苏 南京 210096
收稿日期:2010-03-08,
修回日期:2010-04-05,
网络出版日期:2010-09-29,
纸质出版日期:2010-09-20
移动端阅览
马洪宇, 黄庆安, 秦明. 谐振式MEMS温度传感器设计[J]. 光学精密工程, 2010,18(9): 2022-2027
MA Hong-yu, HUANG Qing-an, QIN Ming. Design of resonant MEMS temperature sensor[J]. 光学精密工程, 2010,18(9): 2022-2027
马洪宇, 黄庆安, 秦明. 谐振式MEMS温度传感器设计[J]. 光学精密工程, 2010,18(9): 2022-2027 DOI: 10.3788/OPE.20101809.2022.
MA Hong-yu, HUANG Qing-an, QIN Ming. Design of resonant MEMS temperature sensor[J]. 光学精密工程, 2010,18(9): 2022-2027 DOI: 10.3788/OPE.20101809.2022.
为了实现以频率输出为信号的气象温度测量
提出了一种基于双层悬臂梁的谐振式微温度传感器。基于双悬臂梁不同材料热膨胀系数的差异会导致悬臂梁谐振频率偏移的原理
采用压电方式同时实现悬臂梁的驱动及其谐振频率的检测
从而实现温度的测量。根据硅基传感器的正面腐蚀工艺
设计了谐振悬臂梁的双层结构
采用有限元方法分析了悬臂梁的谐振模态、可利用的振型及其温度与各模态谐振频率的关系
并利用多普勒振动系统对悬臂梁的谐振特性进行了研究。实验发现悬臂梁的二阶弯曲振型
Q
值相对于其它振型是最大的
其
Q
值约为150;高阶振型特别是二阶弯曲振型适合用于以ZnO为压电材料的温度传感器的频率检测
并且具有相对较高的灵敏度(约为20 Hz/℃)和频率温度系数(1.910
-4
/℃)。结果表明
微型温度传感器能够满足气象温度检测的要求
并具有抗干扰能力强、灵敏度高、信号传输接口简单等优点。
In order to realize meteorologic temperature measurement based on frequency outputs
a resonant micro-temperature sensor with a bilayer cantilever was proposed. According to the working principle that the resonant frequency of the microcantilever will be shifted due to the thermal expansion coefficient mismatch between the two-materials
the temperature variation could be detected by driving the cantilever and detecting the resonant frequency with piezoelectric excitation and detection. The structure of the temperature sensor was designed according to the front side fabrication process of silicon. Then
the resonant modes
detectable models and the effect of temperature on these models were analyzed by means of finite element method. The resonant characteristics were also researched with a polytech laser Doppler vibrometer. The results indicate that the 2nd resonant model of the cantilever has the largest
Q
factor about 150 as compared with other resonant models. Furthermore
the higher mode
particularly the 2nd resonant model is more suitable for detecting the resonant frequency of the temperature sensors by utilizing ZnO as piezoelectric materials and it can offer a relative higher sensitivity about 20 Hz/℃ and temperature coefficient of frequency about 1.910
-4
/℃. These results show that the sensor can satisfy the requirements of meteorologic temperature measurement and has the advantages of high electrical stability
high sensitivity and simple signal transmission interface.
BAKKER A, HUIJSING J H. CMOS smart temperature sensor: an overview . Proceeding of the First IEEE Sensors Conference. Orlando, 2002:1423- 1427.
XU J, YOU B, LI X, et al.. Fully digital smart temperature sensor with quartz tuning fork resonator
. Opt. Precision Eng.,2009,17(4):1453- 1459.
GREGORY T A K. Micromachined transducers sourcebook
. Boston: The McGraw-Hill,1998.
MUTYALA M S K, BANDHANADHAM D, PAN L, et al..Mechanical and electronic approaches to improve the sensitivity of microcantilever sensors
. Acta Mechanica Sinica, 2009,25(1):1-12.
FRITZ J. Cantilever biosensors
. Analyst, 2008, 133(7):855-863.
梁晋涛,刘诗斌,刘君华,等. 碳纳米管压阻微悬臂梁红外热探测器
. 光学 精密工程,2008,16 (4):682-688. LIANG J T, LIU S B, LIU J H, et al.. Micro-cantilever thermal infrared detector with carbon nanotubes
. Opt. Precision Eng., 2008,16(4):682-688.(in Chinese)
袁江波,单小彪,谢涛,等. 悬臂梁单晶压电发电机的实验
. 光学 精密工程,2009,17 (5) :1072-1077. YUAN J B, SHAN X B, XIE T, et al.. Experiment of monocrystal piezoelectric generator with cantilever beam structure
. Opt. Precision Eng., 2009,17(5):1072-1077.(in Chinese)
阚君武,唐可洪,王淑云, 等. 压电悬臂梁发电装置的建模与仿真分析
. 光学 精密工程,2008,16 (1) :71-75. KAN J W, TANG K H, WANG S Y, et al.. Modeling and simulation of piezoelectric cantilever generators
. Opt. Precision Eng., 2008,16 (1):71-75.(in Chinese)
VOICULESCU I R, ZAGHLOU M E,MCGILL R A,et al..Modelling and measurements of a composite microcantilever beam for chemical sensing applications
. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,2006,220(10):1601- 1608.
PETERSEN K E. Dynamic micromechanics on silicon: Techniques and devices
. IEEE Trans. Electron Devices, 1978,25(12):1241- 1250.
BLEVINS R D. Formulas for natural frequency and mode shape
. The Journal of the Acoustical Society of America, 1980,67(5):1849- 1849.
TIMOSHENKO S. Analysis of bi-metal thermostats
. Journal of the Optical Society of America, 1925,11(3):233- 255.
0
浏览量
557
下载量
10
CSCD
关联资源
相关文章
相关作者
相关机构