浏览全部资源
扫码关注微信
1. 华南理工大学 机械与汽车工程学院,广东 广州,510641
2. 广东省科学院自动化工程研制中心,广东 广州 510070
收稿日期:2009-11-29,
修回日期:2010-01-18,
网络出版日期:2010-09-29,
纸质出版日期:2010-09-20
移动端阅览
张晓平, 刘桂雄, 周松斌. 利用最小二乘支持向量机实现无线传感器网络的目标定位[J]. 光学精密工程, 2010,18(9): 2060-2068
ZHANG Xiao-ping, LIU Gui-xiong, ZHOU Song-bin. Target localization based on LSSVR in wireless sensor networks[J]. 光学精密工程, 2010,18(9): 2060-2068
张晓平, 刘桂雄, 周松斌. 利用最小二乘支持向量机实现无线传感器网络的目标定位[J]. 光学精密工程, 2010,18(9): 2060-2068 DOI: 10.3788/OPE.20101809.2060.
ZHANG Xiao-ping, LIU Gui-xiong, ZHOU Song-bin. Target localization based on LSSVR in wireless sensor networks[J]. 光学精密工程, 2010,18(9): 2060-2068 DOI: 10.3788/OPE.20101809.2060.
针对接收信号强度值(RSSI)的波动直接影响无线传感器网络(WSN)目标定位准确度的问题
研究了利用最小二乘支持向量回归机(LSSVR)实现WSN的目标定位的基本原理
分析了固定探测节点和探测节点变化时的LSSVR建模定位特性
提出了基于自适应LSSVR回归建模实现WSN目标定位的方法(TL-AML)。该方法综合考虑目标定位准确度和实时性
初始时刻首先建立LSSVR回归模型来定位目标
根据后面任一时刻探测节点与前一时刻回归模型建模节点的包含关系决定是否重新建模
实现自适应建模定位过程。基于CC2430无线传感网络实验平台
进行了相关TL-AML方法性能实验
通过合理选取建模参数
TL-AML方法的目标定位均方根误差(RMSE)比MLE方法减小34%~37%
比LSE方法减小60%~65%。建模参数在较大范围内取值时
TL-AML方法目标定位准确度比MLE和LSE方法有明显提高。在LSSVR建模情况下
TL-AML方法目标定位耗时0.2~0.4 s
无需重复建模时
目标定位耗时减少到0.04 s。实验结果表明
TL-AML方法能够显著减小RSSI波动对目标定位结果的影响
提高目标定位准确度
减少目标定位时间
且具有较好的目标定位实时性。
In consideration of the direct influence of Received Signal Strength Indicator(RSSI) fluctuation on the target localization accuracy in wireless sensor networks (WSN)
the basic principle of target localization using Least Square Support Vector Regression(LSSVR) is discussed. Then
the characteristics of LSSVR modeling are analyzed for given and variable detection sensors
respectively. Furthermore
a method for Target Localization based on Adaptive LSSVR Modeling (TL-AML) in WSN is proposed. By considering localization accuracy and real-time performance comprehensively
LSSVR models are built for locating target at initial time
and at follow-up time it is used to decide whether new models need to be built or not according to the inclusion relation between detection nodes and sensor nodes. The performance of TL-AML is verified based on CC2430 WSN experiment platform. Results show that the Root Mean Square Error (RMSE) of target localization based on TL-AML has reduced by 34%~37% and 60%~65% as compared with those of MLE and LSE
respectively. When modeling parameters are taken in reasonable value ranges
the localization accuracy of TL-AML is improved evidently compared with MLE and LSE. Moreover
the consuming time of TL-AML is 0.2~0.4 s
If LSSVR modeling is needed. Otherwise
the consuming time is only about 0.04 s. The results indicate that TL-AML method can weaken the influence of RSSI fluctuation on the accuracy of target localization and has good real-time target localization accuracy.
OZDEMIR O, NIU R X, VARSHNEY P K. Channel aware target localization with quantized data in wireless sensor networks
. IEEE Transactions on Signal Processing, 2009,57(3):1190-1202.
FARRELL R, GARCIA R, LUCARELLI D, et al.. Target localization in camera wireless networks
. Pervasive and Mobile Computing, 2009,5(2):165-181.
SHOEB M, AHMAD F, AMIN M. Narrowband source localization for indoor wireless environments . Proc. of the Fifth IEEE International Symposium on Signal Processing and Information Technology, Athens, Greece,ISSPIT, 2005:411-416.
BATSON M S, MCEACHEN J C, TUMMALA M. A method for fast radio frequency direction finding using wireless sensor networks . Proc. of the 41st Annual Hawaii International Conference on System Sciences, Big Island, HI: HICSS, 2008:495-495.
KAPLAN, LANCE M. Global node selection for localization in a distributed sensor network
. IEEE Transactions on Aerospace and Electronic Systems, 2006,42(1):113-135.
CHALLA S, LEIPOLD F,DESHPANDE S K,et al.. Simultaneous localization and mapping in wireless sensor networks . Proc. of the 2005 Intelligent Sensors, Sensor Networks and Information Processing Conference, Melbourne, Australia: ISSNIPC, 2005:81-87.
NOEL M M, JOSHI P P, JANNETT T C. Improved maximum likelihood estimation of target position in wireless sensor networks using particle swarm optimization . Proc. of Third International Conference on Information Technology, Las Vegas, USA: ITNG, 2006:274-278.
ZEMEK R, HARA S, YANAGIHARA K. A joint estimation of target location and channel model parameters in an IEEE 802.15.4-based wireless sensor network . Proc. of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Athens, Greece : PIMRC, 2007:1-5.
ANZAI D, HARA S. A simple outlier data rejection algorithm for an RSSI-based ML location estimation in wireless sensor networks . Proc. of IEEE Vehicular Technology Conference, Calgary, Canada: VTC, 2008:1-5.
BLACK T J, PATHIRANA P N, NAHAVANDI S. Position estimation and tracking of an autonomous mobile sensor using Received Signal Strength . Proc. of the 2008 International Conference on Intelligent Sensors, Sensor Networks and Information, Sydney, Australia: ISSNIP, 2008:19-24.
SHENG X H, HU Y H. Maximum likelihood multiple-source localization using acoustic energy measurements with wireless sensor networks
. IEEE Transactions on Signal Processing, 2005,53(1):44-53.
贺秋伟,王龙山,刘庆民,等. 基于支持向量回归的小尺寸零件精密测量
. 光学 精密工程,2007,15(4):557-563. HE Q W, WANG L SH, LIU Q M, et al.. Precision measurement for small size parts based on support vector regression
. Opt. Precision Eng.,2007,15(4):557-563.(in Chinese)
林伟青,傅建中,许亚洲,等. 基于LS-SVM与遗传算法的数控机床热误差辨识温度传感器优化策略
. 光学 精密工程, 2008,16(9):1682-1687. LIN W Q,FU J ZH,XU Y ZH, et al.. Optimal sensor placement for thermal error identification of NC machine tool based on LS-SVM and genetic algorithm
. Opt. Precision Eng., 2008,16(9):1682-1687. (in Chinese)
WU H L, NG J K, KARL R, et al.. Location estimation via support vector regression
.Mobile Computing,2007,6(3):311-321.
刘桂雄,张晓平,周松斌. 基于最小二乘支持向量回归机的无线传感器网络目标定位法
. 光学 精密工程, 2009,17(7):1777-1784. LIU G X, ZHANG X P, ZHOU S B. Target localization in wireless sensor networks based on LSSVR
. Opt. Precision Eng., 2009,17(7):1777-1784.(in Chinese)
张晓平,刘桂雄,何学文. 消除WSN目标功率变化影响的信号强度差LSSVR定位方法
. 哈尔滨工程大学学报, 2009,30(12):1-6. ZHANG X P, LIU G X, HE X W. Target localization method in WSN based on LSSVR modeling on strength signal difference for the purpose of eliminating the influence of target power variation
. Journal of Harbin Engineering University, 2009,30(12):1-6.(in Chinese)
KHAWAJA T S, GEORGOULAS G, VACHTSEVANOS G. An efficient novelty detector for online fault diagnosis based on least squares support vector machines . Proc. of IEEE Autotestcon, Salt Lake City, USA: 2008:202-207.
姚富光,钟先信,唐向阳. 异物在线识别中一类支持向量机机理及实现
. 光学 精密工程, 2009,17(4):937-942. YAO F G, ZHONG X X, TANG X Y. Mechanism and implementation of one class support vector machines in fast foreign real-time recognition
. Opt. Precision Eng., 2009,17(4):937-942.(in Chinese)
0
浏览量
421
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构