浏览全部资源
扫码关注微信
1. 大连理工大学 精密与特种加工教育部重点实验室,辽宁 大连,116023
2. 辽宁省微纳米技术及系统重点实验室,辽宁 大连 116024
收稿日期:2009-12-08,
修回日期:2010-03-10,
网络出版日期:2010-10-28,
纸质出版日期:2010-10-20
移动端阅览
佘东生, 王晓东, 张习文, 王立鼎. 低温环境下MEMS微构件的动态特性及测试系统[J]. 光学精密工程, 2010,18(10): 2178-2184
SHE Dong-sheng, WANG Xiao-dong, ZHANG Xi-wen, WANG Li-ding. Dynamic testing of MEMS micro-structure and its measurement system at low temperatures[J]. Editorial Office of Optics and Precision Engineering , 2010,18(10): 2178-2184
佘东生, 王晓东, 张习文, 王立鼎. 低温环境下MEMS微构件的动态特性及测试系统[J]. 光学精密工程, 2010,18(10): 2178-2184 DOI: 10.3788/OPE.20101810.2178.
SHE Dong-sheng, WANG Xiao-dong, ZHANG Xi-wen, WANG Li-ding. Dynamic testing of MEMS micro-structure and its measurement system at low temperatures[J]. Editorial Office of Optics and Precision Engineering , 2010,18(10): 2178-2184 DOI: 10.3788/OPE.20101810.2178.
研究了微机电系统(MEMS)微构件的谐振频率等动态特性在低温环境下的变化规律
从理论上分析了改变环境温度对微悬臂梁谐振频率的影响
并对低温环境下微构件的动态特性测试技术进行了研究。研制了低温环境下MEMS动态特性测试系统
采用半导体冷阱实现低温环境
利用压电陶瓷作为底座激励装置的驱动源
通过底座的冲击激励
使微悬臂梁处于自由衰减振动状态
使用激光多普勒测振仪对微悬臂梁的振动响应进行检测
从而获得微悬臂梁的谐振频率。利用研制的测试系统
在-50 ℃~室温的环境下对单晶硅微悬臂的谐振频率进行了测试
结果表明
随着温度的降低
微悬臂梁的谐振频率略有增大
其谐振频率的温度变化率约为-0.263 Hz/K
与理论分析的结果基本一致。该测试装置能够有效地完成在-50 ℃~室温环境下微构件的动态特性测试。
To investigate the dynamic characteristics of micro-structure in a Micro-electro-mechanical System(MEMS) at a low temperature environment
a theoretical model was established and the effect of environmental temperatures on the resonant frequency of a micro-cantilever was researched. Then
a dynamic testing system for MEMS at low temperature was developed. In testing
a thermoelectric cooling refrigerator was utilized to generate the low temperature environment and the piezoelectric ceramic was used as the driving source to establish the base excitation device. Through the base impact excitation
the resonance frequencies were obtained by analyzing the impulse response signals and the frequency response of micro-cantilever was tested by using a laser Doppler vibrometer. The dynamic testing experiments for the silicon micro-cantilever were carried out from -50 ℃ to room temperature. Obtained results show that the resonance frequency slightly increases with the decreasing temperature
and it is consistent with that of the theoretical analysis. The temperature dependency of frequency is about -0.263 Hz/K
which is a little smaller than that of the theoretical results. The measurement device is very effective to carry out dynamic testing of microstructures from -50 ℃ to room temperature.
周兆英,叶雄英,崔天宏,等. 微米纳米技术及微型机电系统[J]. 光学 精密工程,1998,6 (2):1-7. ZHOU Z Y,YE X Y,CUI T H,et al.. Microtechnology/Nanotechnology and MEMS [J]. Opt. Precision Eng.,1998,6(2):1-7. (in Chinese)[2] WEN H K. Trends and frontiers of MEMS [J]. Sensors and Actuators A,2007,136:62-67. [3] TANAKA M. An industrial and applied review of new MEMS device features [J]. Microelectronic Engineering,2007,84:1341-1344.[4] CHOA S H. Reliability of vacuum packaged MEMS gyroscopes [J]. Microelectronics Reliability,2005,45:361-369.[5] TANNER D M. MEMS reliability: where are we now? [J]. Microelectronics Reliability,2009,49:937-940.[6] RAITERI R,GRATTAROLA M,BUTT H J,et al.. Micromechanical cantilever-based biosensors [J]. Sensors and Actuators B,2001,79:115-126.[7] MERTEN J,FIONOT E,THUNDAT,et al.. Effects of temperature and pressure on microcantilever resonance response [J]. Ultramicroscopy.2003,97(1-4):119-126.[8] 王涛. 高g值环境典型微结构动态特性及其测试技术研究 . 大连:大连理工大学,2008:56-57. WANG T. Study on Dynamic Charaeteristics and Testing Technology of Microstrueture under High g-Force . Dalian: Dalian University of Technology,2008:56-57. (in Chinese)[9] LIN R M,WANG W J. Structural dynamics of Microsystems-current state of research and future directions [J]. Mechanical Systems and Signal Processing,2006,1015-1043.[10] 李智,王向军. 微机电系统测试技术及方法[J]. 光 学精密工程,2003,11 (1):37-44. LI Z,WANG X J. MEMS measurement technologies and methods[J]. Opt. Precision Eng.,2003,11 (1):37-44. (in Chinese)[11] 王文亮,张文,罗惟德,等.结构动力学 [M]. 上海:复旦大学出版社. 1993. 245-251. WANG W L,ZHANG W,LUO W D, et al.. Dynamics of Structures [M].Shanghai: Fudan University Press. 1993. 245-251.(in Chinese)[12] PETERSEN K. Silicon as a mechanical materials [J]. Proceedings of IEEE on Electron Devices. 1982,70(5):420-457.[13] MCSKIMIN H J. Measurement of elastic constants at low temperature by means of ultrasonic waves data for silicon and germanium single crystals and for fused silica [J]. J.Appl.Phy. 1953,(24):988-997.
0
浏览量
279
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构