浏览全部资源
扫码关注微信
西安交通大学 机械工程学院,陕西 西安,710049
收稿日期:2010-01-22,
修回日期:2010-03-25,
网络出版日期:2010-10-28,
纸质出版日期:2010-10-20
移动端阅览
唐正宗, 梁晋, 肖振中, 郭成. 用于三维变形测量的数字图像相关系统[J]. 光学精密工程, 2010,18(10): 2244-2253
TANG Zheng-zong, LIANG Jin, XIAO Zhen-zhong, GUO Cheng. Digital image correlation system for three-dimensional deformation measurement[J]. Editorial Office of Optics and Precision Engineering , 2010,18(10): 2244-2253
唐正宗, 梁晋, 肖振中, 郭成. 用于三维变形测量的数字图像相关系统[J]. 光学精密工程, 2010,18(10): 2244-2253 DOI: 10.3788/OPE.20101810.2244.
TANG Zheng-zong, LIANG Jin, XIAO Zhen-zhong, GUO Cheng. Digital image correlation system for three-dimensional deformation measurement[J]. Editorial Office of Optics and Precision Engineering , 2010,18(10): 2244-2253 DOI: 10.3788/OPE.20101810.2244.
针对材料力学实验中的三维变形测量
提出并实现了一种基于双目立体视觉、摄影测量术和数字图像相关法的便携式三维变形测量系统。研究了该系统涉及的双目摄像机标定
图像相关算法
三维重建
以及三维位移、应变计算等关键技术。提出了一种基于摄影测量术的摄像机标定算法
该算法采用10参数镜头畸变模型
不需要高精度标定板即可实现摄像机的高精度标定。利用最小二乘非线性优化算法实现了数字图像的高精度匹配
针对非线性优化初值难求的问题
提出了一种基于种子点的初值计算方法
为非线性优化提供了可靠的初值。最后
介绍了三维重建以及计算三维位移、三维应变的方法。实验结果表明
标定结果的重投影误差为0.03 pixel
图像匹配的误差约为0.02 pixel
静态外形及位移的测量精度为0.05%
应变的测量精度优于0.5%。与传统的测量方法相比
本文提出的系统可以更准确、全面、直观地实现对位移场、应变场的测量。
In order to solve the problem of the three-dimensional deformation measurement in mechanics experiments
a new deformation measurement system based on stereo vision
photogrammetry and a digital image correlation method is proposed and implemented. The key technologies applied in the system are studied
including binocular camera calibration
image correlation algorithms
three-dimensional reconstruction and the calculations of three-dimensional displacement and strain. Firstly
a new camera calibration algorithm based on the photogrammetry is proposed
in which a 10 parameter lens distortion model is adopted to achive a reliable camera calibration result without any accurate calibration pattern. Then
the high precision image correlation is realized by using a least-square nonlinear optimization algorithm.To solve the problem in calculating initial values for the nonlinear optimization
a method based on seed points is proposed to provide a reliable initial value for the least-square nonlinear optimization. Finally
the approaches used for three-dimensional reconstruction and calculating three-dimensional displacement and strain are presented in detail. Experimental results show that the RMS error of the calibration result is 0.03 pixel
the accuracy of image correlation is about 0.02 pixel
and the measurement accuracies for the static profile
displacement and the strain are 0.05% and better than 0.5%
respectively. Compared with the traditional measurement method
the system can be more accurate
comprehensive and intuitive to achieve the measurement for displacement field and strain fields.
SUTTON M, MCNEILL S, HELM J, et al.. Advances in two-dimensional and three-dimensional computer vision[J]. Photomechanics, 2000,77:323-372.[2] PAN B, QIAN K M, XIE H M, et al.. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review[J]. Measurement Science & Technology, 2009,20(6):062001.[3] LUO P, CHAO Y, SUTTON M, et al.. Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision[J]. Experimental Mechanics, 1993,33(2):123-132.[4] HELM J, MCNEILL S, SUTTON M. Erratum: improved three-dimensional image correlation for surface displacement measurement[J]. Optical Engineering, 1997,36(8):2361-2361.[5] 陈刚, 车仁生, 叶东, 等. 一种基于立体模板的双目视觉传感器现场标定方法[J]. 光学 精密工程, 2004,12(6):626-631. CHEN G, CHE R SH, YE D, et al.. Stereo vision sensor field calibration method based on volume template[J]. Opt. Precision Eng., 2004,12(6):626-631. (in Chinese)[6] 孙军华, 吴子彦, 刘谦哲, 等. 大视场双目立体视觉传感器的现场标定[J]. 光学 精密工程,2009,17(3):633-640. SUN J H, WU Z Y, LIU Q ZH, et al.. Field calibration of stereo vision sensor with large FOV[J]. Opt. Precision Eng., 2009,17(3):633-640. (in Chinese)[7] ZHANG Z Y. A flexible new technique for camera calibration[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions, 2000,22(11):1330-1334.[8] BRUCK H, MCNEILL S, SUTTON M, et al.. Digital image correlation using Newton-Raphson method of partial differential correction[J]. Experimental Mechanics, 1989,29(3):261-267.[9] PAN B, ASUNDI A, XIE H, et al.. Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements[J]. Opt. Lasers in Eng., 2009,47(7-8):865-874.[10] 陈华, 叶东, 陈刚, 等. 遗传算法的数字图像相关搜索法[J]. 光学 精密工程,2007,15(10): 1633-1637. CHEN H, YE D, CHEN G, et al.. Digital image correlation search method based on genetic algorithm[J]. Opt. Precision Eng., 2007,15(10):1633-1637. (in Chinese)[11] 潘兵, 谢惠民. 基于差分进化的数字图像相关方法[J]. 光电子激光, 2007(1):100-103. PAN B, XIE H M. Digital image correlation method with differential evolution[J]. Journal of OptoelectronicsLaser, 2007(1):100-103. (in Chinese)[12] OZTURK A, HALICI U, ULUSOY I, et al.. 3D face reconstruction using stereo images and structured light . IEEE 16th Signal Processing,Communication and Applications Conference,SIU 2008,Aydin,2008:1-4.[13] 马颂德, 张正友. 计算机视觉-计算理论与算法基础[M]. 北京: 科学出版社, 1998. MA S D, ZHANG ZH Y. Computer Vision Algorithms and Theoretical Calculation Based[M]. Beijing: Science Press, 1998. (in Chinese)[14] LUHMANN T, ROBSON S, KYLE S, et al.. Close Range Photogrammetry: Principles, Techniques and Applications[M]. UK: Whittles Publishing, 2006.[15] TSAI R. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses[J]. Robotics and Automation,1987,3(4):323-344.[16] 冯文灏. 工业测量[M]. 武汉:武汉大学出版社, 2004. FENG W H. Industrial Measurement[M]. Wuhan: Wuhan University Press, 2004. (in Chinese)
0
浏览量
233
下载量
31
CSCD
关联资源
相关文章
相关作者
相关机构