浏览全部资源
扫码关注微信
1. 重庆理工大学 计算机学院 重庆,400054
2. 重庆理工大学 电子信息与自动化学院 重庆,400054
收稿日期:2009-12-10,
修回日期:2010-03-10,
网络出版日期:2010-10-28,
纸质出版日期:2010-10-20
移动端阅览
闫河, 余永辉, 赵明富. 基于移不变抗混叠轮廓波变换的混合统计模型图像降噪[J]. 光学精密工程, 2010,18(10): 2269-2279
YAN He, YU Yong-hui, ZHAO Ming-fu. Mixed statistical model image denoising based on shift-invariant non-aliasing Contourlet transform[J]. Editorial Office of Optics and Precision Engineering , 2010,18(10): 2269-2279
闫河, 余永辉, 赵明富. 基于移不变抗混叠轮廓波变换的混合统计模型图像降噪[J]. 光学精密工程, 2010,18(10): 2269-2279 DOI: 10.3788/OPE.20101810.2269.
YAN He, YU Yong-hui, ZHAO Ming-fu. Mixed statistical model image denoising based on shift-invariant non-aliasing Contourlet transform[J]. Editorial Office of Optics and Precision Engineering , 2010,18(10): 2269-2279 DOI: 10.3788/OPE.20101810.2269.
针对抗混叠轮廓波变换缺乏平移不变性的缺陷
构造出具有近似移不变性的抗混叠轮廓波变换。在此基础上
在变换域提出一种混合统计模型图像降噪方法。该方法充分利用变换域信号系数层间层内相关性强、噪声系数无层内相关性且在小尺度下存在较强的假层间相关性的特点
采用混合统计模型对小尺度信号系数进行估计
从而避免了非高斯双变量模型放大噪声系数的风险。实验结果表明
提出的去噪法能克服轮廓波变换中的频谱混叠
避免重构图像出现"划痕"和边缘模糊现象
得到的峰值信噪比(PSNR)值分别比轮廓波硬阈值去噪、轮廓波变换域HMT去噪和抗混叠轮廓波变换域硬阈值去噪平均高2.87
1.32和1.36 dB
在有效去噪的同时
具有较好的图像边缘和细节保护能力。
To avoid shift-variance defects in the original Non-aliasing Contourlet Transform (NACT)
a new approximate Shift-invariance NACT(SINACT) was proposed. On this basis
a mixed statistical model image denoising method was presented based on SINACT. This method took full advantage of the characteristics that there were intra-scale and inter-scale correlations for signal coefficients and there was no intra-scale correlation but strong inter-scale correlation for noise coefficients at small scales.Furthermore
a mixed statistical model was used to estimate the small-scale signal coefficients to avoid noise coefficients amplified by the non-Gaussian bivariate model. Experimental results show that the proposed scheme can overcome the aliasing in the Contourlet transform domain and can avoid "scratching" and edge blur phenomena in the reconstructed image. The denoising Peak Signal to Noise Ratio(PSNR) of the proposed scheme is on average higher by about 2.87
1.32 and 1.36 dB than those of the Contourlet transform hard-threshold denoising
Contourlet transform domain HMT denoising and hard-threshold denoising based on NACT
respectively
and it can achieve an excellent balance between suppressing noise and preserving as many image details and edges as possible.
DO M N,VETTERLI M.Contourlets: a directional multiresolution image representation .Proc.of IEEE International Conference on Image Processing (ICIP), Rochester, September 2002:1-4.[2] 陈志刚.尹福昌. 基于Contourlet变换的遥感图像增强算法[J]. 光学 精密工程,2008,16(10):2030-2037. CHEN ZH G,YIN F CH.Enhancement of remote sensing image based on Contourlet transform[J]. Opt. Precision Eng., 2008,16(10):2030-2037. (in Chinese)[3] 张麒,汪源源,王威琪,等. 活动轮廓模型和Contourlet多分辨率分析分割血管内超声图像[J]. 光学 精密工程,2008,16(11):2303-2311. ZHANG Q,WANG Y Y,WANG W Q,et al..Intravascular ultrasound image segmentation based on active contour model and Contourlet multiresolution analysis[J]. Opt. Precision Eng., 2008,16(11):2303-2311. (in Chinese)[4] 焦李成,谭山. 图像的多尺度几何分析:回顾和展望[J]. 电子学报,2003,31(12A):1975-1981. JIAO L CH,TAN SH.Development and prospect of image multiscale geometric analysis[J].ACTA Electronic Sinca,2003,31(12A):1975-1981.(in Chinese)[5] CANDES E J, DEMANET L, DONOHO D L,et al..Fast discrete Curvelet transforms .Applied and Computational Mathematics,California Institute of Technology,2005:1-43.[6] 张强,郭宝龙. 应用第二代Curvelet变换的遥感图像融合[J]. 光学 精密工程,2007,15(7):1130-1136. ZHANG Q,GUO B L.Fusion of remote sensing images based on second generation Curvelet transform[J].Opt. Precision Eng., 2007,15(7):1130-1136.(in Chinese)[7] NGUYEN T T, ORAINTARA S.On the aliasing effect of the Contourlet filter banks . IEEE International Symposium on Circuits and Systems (ISCAS'06), Greece,2006:1-5. [8] LIU Y L, NGUYEN T T, ORAINTARA S.Low bit-rate image coding based on pyramidal directional filter banks .the International Conference on Acoustics, Speech, and Signal Processing (ICASSP'06), France,2006:2-2.[9] 冯鹏,魏彪,潘英俊,等. 基于方向滤波器组的Contourlet 变换频谱混叠特性研究[J]. 光电子激光,2008,19(12):1670-1674. FENG P,WEI B,PAN Y J,et al..The research of frequency aliasing of Contourlet transform based on directional Filter banks[J]. Journal of Optoelectronics Laser, 2008,19(12):1670-1674.(in Chinese)[10] 冯鹏,魏彪,潘英俊,等. 基于拉普拉斯塔型变换的Contourlet变换频谱混叠特性分析[J]. 光学学报,2008,28(11):2090-2096. FENG P,WEI B,PAN Y J,et al..Analysis of frequency aliasing of Contourlet transform based on Laplace pyramidal transform[J].Acta Optica Sinica, 2008,28(11):2090-2096.(in Chinese)[11] LU Y,DO M N.A new contourlet transform with sharp frequency localization . Proc.of IEEE International Conference on Image Processing, Atlanta, USA,2006:1629-1632.[12] 冯鹏,魏彪,潘英俊,等. 抗混叠塔型变换的构造[J]. 电子学报,2009,37(11): 2510-2515. FENG P,WEI B,PAN Y J,et al..Construction of non-aliasing pyramidal transform[J]. Acta Electronica Sinica, 2009,37(11):2510-2515.(in Chinese)[13] SIMONCELLI E P,FREEMAN W T.The steerable pyramid:a flexible architecture for multi-scale derivative computation .Proceedings of International Conference on Image Processing,W ashington D C,1995:444-447.[14] CUNHA A L,ZHOU J, DO M N.The nonsubsampled contourlet transform: theory, design, and applications[J]. IEEE Transactions on Image Processing,2006,15(10):3089-3101.[15] 闫河,潘英俊,刘加伶,等. 抗混叠Curvelet变换非高斯双变量模型图像降噪[J]. 光学 精密工程,2009,17(7):1774-1781. YAN H,PAN Y J,LIU J L,et al..Image denoising using non-Gaussian brivariate model based on non-aliasing Curvelet transform[J].Opt. Precision Eng., 2009,17(7):1774-1781.(in Chinese)[16] PO D D Y, DO M N. Directional multiscale modeling of images using the Contourlet transform[J]. IEEE Trans on Image Processing, 2006, 6(15):1610-1620.
0
浏览量
419
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构