浏览全部资源
扫码关注微信
华南理工大学 机械与汽车工程学院,广东 广州 510640
收稿日期:2009-12-10,
修回日期:2010-03-10,
网络出版日期:2010-10-28,
纸质出版日期:2010-10-20
移动端阅览
洪晓斌, 刘桂雄. 面向IP模式测控系统的PLSR-SBR双层压缩[J]. 光学精密工程, 2010,18(10): 2280-2287
HONG Xiao-bin, LIU Gui-xiong. Double-layer compression method based on PLSR-SBR for IP mode measurement and control system[J]. Editorial Office of Optics and Precision Engineering , 2010,18(10): 2280-2287
洪晓斌, 刘桂雄. 面向IP模式测控系统的PLSR-SBR双层压缩[J]. 光学精密工程, 2010,18(10): 2280-2287 DOI: 10.3788/OPE.20101810.2280.
HONG Xiao-bin, LIU Gui-xiong. Double-layer compression method based on PLSR-SBR for IP mode measurement and control system[J]. Editorial Office of Optics and Precision Engineering , 2010,18(10): 2280-2287 DOI: 10.3788/OPE.20101810.2280.
针对以太网测控网络存在数据冲突导致系统实时性、可靠性降低问题
提出了基于偏最小二乘回归(PLSR)SBR的双层压缩方法。第一层建立主参量与所有辅助参量的确定模型
利用压缩有效性指标确定主成分
完成主参量的信息压缩。第二层基于改进的SBR
通过选取辅助参量中的基础序列
建立基础信号;在满足拟合误差条件下
逐步将每一个辅助参量序列映射到基础信号上
完成对辅助参量的数据压缩。该方法重点解决辅助参量和主参量中的解释潜变量
和反映潜变量
相关程度最大、基础信号由最少基础序列组成、辅助参量实现最小变长分解个数及基础信号独立更新原则等关键问题。最后将该方法应用于IP模式乙醇浓度测控系统。实验结果表明
在IP模式测控系统同时具有主参量和辅助参量
且不同参量间存在相关性时
该方法可在允许拟合相对误差为5%的情况下
使压缩率达到68%以上
从而有效地降低以太网测控网络数据冲突程度。
To address the existing problems in Ethernet measurement and control networks
such as real-time and reliability caused by the collision of measurement and control data
a double-layer compression method based on Partial Least Square Regression-self Based Regression(PLSR-SBR) was induced to the IP Mode Measurement and Control System(IMMCS). In the first layer
the model of main parameters and all auxiliary parameters was built up based on PLSR.The principal score of main parameter was determined by the efficient compression index to finish the information compression of main parameter. In the second layer
the auxiliary parameters were compressed based on a modified SBR to set up a basic signal. To ensure the fitting error to be smaller than the setting value
every auxiliary parameter sequence in the auxiliary parameters or the decomposed sequences were mapped in turn to a definitive basic signal to complete the data compression of the auxiliary parameters. Innovative technologies for some key problems were addressed in the method
including the confirmation of maximum correlation degree of interpreting latent variables and reflecting latent variables
basic signal with least basic sequences
the minimum number of decomposed sequences from auxiliary parameters and the independent update rule of basic signal. Finally
experiments using IMMCS for alcohol concentration were performed. The results show that under the conditions that IMMCS possesses main parameters and auxiliary parameters
and simultaneously data variety of parameters is wide
the compression ratio based on the method reaches 68%
which is higher than that based on the Swinging Door. The data collision of Ethernet measurements and control networks are decreased effectively.
PETER N. Communication in industrial automationWhat is going on? [J].Control Engineering Practice, 2007,15(11):1332-1347.[2] MAKAROV Y V, LOUTAN C, MA J, et al.. Operational impacts of wind generation on california power systems[J].IEEE Transactions on Power Systems, 2009,24(2):1039-1050.[3] DELIGIANNAKIS A, KOTIDIS Y, ROUSSOPOULOS N. Compressing historical information in sensor networks .Proceeding of International Conference on Management of Data, 2004:527- 538.[4] 任倩倩. 传感器网络中感知数据压缩技术研究 . 哈尔滨:黑龙江大学,2006. REN Q Q. Study on compression method for sensing data in sensor networks . Harbin: Heilongjiang University,2006. (in Chinese)[5] 洪晓斌,刘桂雄,周钦河. 网络化测控系统选播运行模式策略[J]. 光学 精密工程,2008,16(5):957-964. HONG X B, LIU G X, ZHOU Q H. Strategy of anycast mode in networked measuring & controlling platform[J]. Opt. Precision Eng.,2008,16(5):957-964. (in Chinese)[6] 张雷,黄廉卿,赵唯佳. 一种超光谱图像分层压缩方法[J]. 光学 精密工程,2006,14(3):478-484. ZHANG L, HUANG L Q,ZHAO W J. A multi-layered decomposition of hyper-spectral image compression[J]. Opt. Precision Eng.,2006,14(3):478-484. (in Chinese)[7] 刘桂雄, 林绪虹. 鱼类超微弱发光的偏最小二乘回归分析与建模[J]. 华南理工大学学报(自然科学版),2006, 34(11):29-32. LIU G X, LIN X H. Partial least-square regressive analysis and modeling of ultraweak photon emission of fish[J]. Journal of South China University of Technology: Natural Science Edition, 2006,34(11):29-32. (in Chinese)[8] 邓家先. 基于重要系数提升的遥感图像压缩[J]. 光学 精密工程,2006,14(5):910-916. DENG J X. A remote-sensing image coding algorithm based on significant coefficients lifting[J]. Opt. Precision Eng.,2006,14(5):910-916. (in Chinese)[9] 王惠文. 偏最小二乘回归方法及其应用[M]. 北京:国防工业出版社,2000:150-171. WANG H W. Partial Least-Squares-Regression Method and Applications[M]. Beijing: Defense Industry Publishing Company,2000:150-171. (in Chinese)[10] DELIGIANNAKIS A, KOTIDIS Y, ROUSSOPOULOS N. Dissemination of compressed historical information in sensor networks[J]. The VLDB Journal ,2007,16:439-461.[11] HONG X B,LIU G X,DU X P. Implementation method for region vector of IP mode multi-sensing cooperated measurement based on synergetics[J]. IEEE, 2008,7: 644-647.
0
浏览量
693
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构