浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,130033
2. 中国科学院研究生院
3. 长春工业大学 电气与电子工程学院,吉林 长春,130012
收稿日期:2009-11-10,
修回日期:2010-03-01,
网络出版日期:2010-10-28,
纸质出版日期:2010-10-20
移动端阅览
程宇奇, 朱明, 李桂菊, 葛微, 陈彦平. 应用迭代圆环像素率法实现快速虹膜定位[J]. 光学精密工程, 2010,18(10): 2306-2313
CHENG Yu-qi, ZHU Ming, LI Gui-ju, GEI Wei, CHEN Yan-ping. Rapid iris localization based on method of iterative pixel ratio to cirque area[J]. Editorial Office of Optics and Precision Engineering , 2010,18(10): 2306-2313
程宇奇, 朱明, 李桂菊, 葛微, 陈彦平. 应用迭代圆环像素率法实现快速虹膜定位[J]. 光学精密工程, 2010,18(10): 2306-2313 DOI: 10.3788/OPE.20101810.2306.
CHENG Yu-qi, ZHU Ming, LI Gui-ju, GEI Wei, CHEN Yan-ping. Rapid iris localization based on method of iterative pixel ratio to cirque area[J]. Editorial Office of Optics and Precision Engineering , 2010,18(10): 2306-2313 DOI: 10.3788/OPE.20101810.2306.
针对虹膜定位易受噪声影响、速度慢、自适应性差等问题
提出了基于迭代圆环像素率法的快速虹膜定位算法。提出的定位算法包括切割虹膜图像、Hough圆检测粗定位、微积分算子精定位3个部分
从切割虹膜图像、图像抽样、迭代圆环像素率法、快速Hough圆检测以及分层定位思想5方面提高算法的速度。提出了缩小半径范围的迭代圆环像素率法以及消除瞳孔光斑的形态学方法
瞳孔分割阈值以及小范围的圆心、半径候选集等参数都是通过计算得到
自适应性好。使用4个虹膜数据库进行实验
并与相近算法进行了对比。实验结果表明
该算法的定位准确率为97.75%~99.07%
定位时间为52.847~158.502 ms
是一种鲁棒、快速、自适应的虹膜定位算法。
Aimed at the problems of noise influence
high time consumption and bad adaptive performance for iris localization
a rapid iris localization algorithm based on the method of iterative pixel ratio to cirque area is proposed. The proposed method is composed of 3 parts: cutting iris image
coarse localization by circle detection of the Hough transformation and the precise localization by an integrodifferential operator. The methods of cutting the iris image
image sampling
iterative pixel ratio to cirque area
rapid circle detection of the Hough transformation and the layered localization theory are used to improve the algorithm speed. The method of iterative pixel ratio to cirque area is put forward to reduce the radius range
and the morphological method is used to eliminate the pupil faculae. The threshold of pupil segmentation
small-range candidates of circle centre and radius
etc
. are all obtained by the computation with good adaptive performance. Finally
four iris databases are applied in the experiments
and experimental results are compared with other algorithms. The results show that the accuracy of the proposed algorithm is 97.75%~99.07% and the time consumption is 52.847~158.502 ms. The experiments prove that the proposed method is a robust
rapid
adaptive iris localization algorithm with good comprehensive performance.
罗菁,林树忠,詹湘琳,等. 基于2DPCA和EBFNN的指纹识别方法[J]. 光学 精密工程,2008,16(9):1773-1780. LUO J, LIN SH ZH, ZHAN X L, et al.. A novel fingerprint recognition algorithm based on 2DPCA and EBFNN [J]. Opt. Precision Eng., 2008,16(9):1773-1780.(in Chinese)[2] 王玮,黄非非,李见为,等. 使用多尺度LBP特征描述与识别人脸[J]. 光学 精密工程,2008,16(4):696-705. WANG W, HUANG F F, LI J W, et al.. Face description and recognition using multi-scale LBP feature [J]. Opt. Precision Eng., 2008,16(4):696-705. (in Chinese)[3] 杨利平,龚卫国,李伟红,等. 随机采样子空间保局投影人脸识别算法[J]. 光学 精密工程,2008,16(8):1465-1470. YAN L P, GONG W G, LI W H, et al.. Random sampling subspace locality preserving projection for face recognition [J]. Opt. Precision Eng., 2008,16(8):1465-1470. (in Chinese)[4] 王蕴红,朱勇,谭铁牛. 基于虹膜识别的身份鉴别 [J]. 自动化学报,2002,28(1):1-10. WANG Y H, ZHU Y, TAN T N. Biometrics personal identification based on iris pattern [J]. Acta Automatica Sinica, 2002,28(1):1-10. (in Chinese)[5] DAUGMAN J. High confidence visual recognition of persons by a test of statistical independence [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1993,15(11):1148-1161.[6] DAUGMAN J.How iris recognition works [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2004,14(1): 21-30.[7] DAUGMAN J.High confidence recognition of persons by their iris patterns . Proceedings of the 2004 Chinese Conference on Biometric Recognition, Guangzhou, P. R. China, 2004,3338:5-25.[8] WILDES R P.Iris recognition: an emerging biometric technology [J]. IEEE,1997,85(9):1348-1363.[9] 刘洋,李霞,王娜,等. 基于特定感兴趣区采样的虹膜定位改进算法[J]. 光子学报,2008,37(6):1277-1280. LIU Y, LI X, WANG N, et al.. An improved iris location algorithm based on sampling to special regions of interesting (ROI) [J]. Acta Photonica Sinica, 2008,37(6):1277-1280. (in Chinese)[10] 刘爱林,王修信,王永军. 基于圆弧逼近的虹膜定位方法[J]. 工程图学学报,2008,29(3):105-108. LIU A L, WANG X X, WANG Y J. Iris location method based on circular arcs approximation [J]. Journal of Engineering Graphics, 2008,29(3):105-108. (in Chinese)[11] DAVIES E R. A modified Hough scheme for general circle location [J]. Pattern Recognition Letters, 1988,7(1):37-44.[12] CANNY J. A computational approach to edge detection [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1986,8(6):679-698.[13] Institute of Automation, Chinese Academy of Sciences. CASIA iris databases . http://www.cbsr.ia.ac.cn/IrisDatabase.htm.[14] Multimedia University. MMU iris database . http://phoenix.inf.upol.cz/iris.[15] 王云新,刘铁根,江俊峰. 基于图像抽样的快速虹膜定位算法[J]. 光电工程,2008,35(9):122-126. WANG Y X, LIU T G, JIANG J F. Rapid iris localization algorithm based on image sampling[J]. Opto-Electronic Engineering, 2008,35(9):122-126. (in Chinese)
0
浏览量
447
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构