浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 哈尔滨工业大学 航天学院,黑龙江 哈尔滨,150001
收稿日期:2010-03-16,
修回日期:2010-04-13,
网络出版日期:2010-11-25,
纸质出版日期:2010-11-25
移动端阅览
张利宾, 崔乃刚, 吕世良, 浦甲伦. 运载火箭上面级惯性与天文组合导航系统设计[J]. 光学精密工程, 2010,18(11): 2473-2481
ZHANG Li-bin, CUI Nai-gang, Lü Shi-liang, PU Jia-lun. Design of INS/CNS integrated navigation system for launch vehicle upper stage[J]. Editorial Office of Optics and Precision Engineering, 2010,18(11): 2473-2481
张利宾, 崔乃刚, 吕世良, 浦甲伦. 运载火箭上面级惯性与天文组合导航系统设计[J]. 光学精密工程, 2010,18(11): 2473-2481 DOI: 10.3788/OPE.20101811.2473.
ZHANG Li-bin, CUI Nai-gang, Lü Shi-liang, PU Jia-lun. Design of INS/CNS integrated navigation system for launch vehicle upper stage[J]. Editorial Office of Optics and Precision Engineering, 2010,18(11): 2473-2481 DOI: 10.3788/OPE.20101811.2473.
针对运载火箭上面级惯性导航随时间累积而误差增大以至不能满足长时间工作要求的问题
对采用星敏感器和地球敏感器修正惯性导航误差的方案进行了研究。首先
导出了上面级常用坐标系定义和姿态转换矩阵。然后
根据惯性导航的误差传播特性、星敏感器测量方程和地球敏感器的模拟测量方程
给出了组合导航的状态方程和观测方程。最后
设计了基于Matlab/dSpace仿真平台的星敏感器在导航回路中的半物理仿真实验。实验结果表明
组合导航使惯性导航位置误差矢量和从1.171 910
4
m减小到1.036 710
3
m
速度误差矢量和从11.282 7 m/s减小到3.662 6 m/s
姿态误差从0.1减小到5'
说明了该组合导航方案能够有效修正惯性导航时间累积误差
半实物仿真实验验证了惯性/天文组合导航方案的可行性与正确性。
As the errors of the Inertial Navigation System (INS) in a launch vehicle upper stage increase significantly with time and cannot meet the requirements of long working hours
an INS/CNS (Celestial Navigation System) integrated navigation system is studied. Firstly
the coordinate systems and the attitude transformation matrix are defined. Then
the state equation and measurement equation of the integrated navigation system are raised from the INS error propagation equations and measurements of the star tracker and earth sensor. Finally
a semi-physical simulation experiment system with the star tracker in the loop is designed based on Matlab/dSpace simulation environment. Experimental results indicate that the integrated navigation system decreases the inertial navigation position errors from 1.171 910
4
m to 1.036 710
3
m
the velocity errors from 11.282 7 m/s to 3.662 6 m/s
and the attitude errors from 0.1 to 5'. Furthermore
the experimental results show that the integrated navigation system can correct the inertial navigation errors effectively
and also confirm that the INS/CNS integrated navigation system is feasible and appropriate.
<td valign='top'>[1]王永志, 王丹阳. 同步通信卫星的发射[M]. 北京: 国防工业出版社, 2005:25-72. WANG Y ZH, WANG D Y. Launch of Geosynchronous Communication Satellites[M]. Beijing: National Defense Industry Press, 2005:25-72.(in Chinese)<td valign='top'>[2]SCOTT D W. Growing a training system and culture for the Ares I Upper Stage project . 2009 IEEE Aerospace conference, Big Sky, MT, 7-14 March 2009:1-8.<td valign='top'>[3]ANCAROLA B P. Ariane 5 performance optimization for interplanetary missions . AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Monterey, California, U.S.A, AIAA 2002-4902,2002:1-9.<td valign='top'>[4]杨金显, 袁赣南. 基于MIMU/GPS的组合导航设计及实验[J]. 光学 精密工程, 2008,16(2):285-294. YANG J X, YUAN G N. Design and experiment for INS based on MIMU/GPS[J]. Opt. Precision Eng., 2008,16(2):285-294.(in Chinese)<td valign='top'>[5]房建成, 宁小琳, 田玉龙. 航天器自主天文导航原理与方法[M]. 北京: 国防工业出版社, 2006:172-206. FANG J CH, NING X L, TIAN Y L. Spacecraft Autonomous Celestial Navigation Principle and Methodology[M]. Beijing: National Defense Industry Press, 2006:172-206. (in Chinese)<td valign='top'>[6]THEIN M L, QUINN D A, FOLTA D C. Celestial navigation (CelNav): lunar surface navigation . AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, Hawaii, U.S.A,2008:1-19.<td valign='top'>[7]STANSTNY N B, BETTINGER R A, CHAVEZ F R. LinCov analysis of an automated celestial inertial navigation approach for GEO satellites . AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, Hawaii, U.S.A, 2008:1-8.<td valign='top'>[8]全伟, 房建成. SINS/CNS组合导航半实物仿真系统及其实验研究[J]. 系统仿真学报, 2007,19(15):3414-3418. QUAN W, FANG J CH. Realization and experimental research for hybrid simulation system of SINS/CNS integrated navigation[J]. Journal of System Simulation, 2007,19(15):3414-3418. (in Chinese)<td valign='top'>[9]全伟, 房建成. 天文导航系统半物理仿真研究[J]. 系统仿真学报, 2006,18(2):353-358. QUAN W, FANG J CH. Hardware in-the-loop simulation of celestial navigation system[J]. Journal of System Simulation, 2006,18(2):353-358. (in Chinese)<td valign='top'>[10]杨涤, 耿云海, 杨旭,等. 飞行器系统仿真与CAD[M]. 哈尔滨: 哈尔滨工业大学出版社, 2005:426-470. YANG D, GENG Y H, YANG X, et al.. Spacecraft System Simulation and CAD[M]. Harbin: Harbin Institute of Technology Press, 2005:426-470. (in Chinese)<td valign='top'>[11]张磊, 魏仲慧, 何昕,等. 快速全天自主星图识别[J]. 光学 精密工程, 2009,17(4):909-915. ZHANG L, WEI ZH H, HE X, et al.. Fast all-sky autonomous star identification[J]. Opt. Precision Eng., 2009,17(4):909-915. (in Chinese)<td valign='top'>[12]李葆华, 马衍宇, 刘睿,等. 适用于星敏感器的预测未知恒星星像质心算法[J]. 光学 精密工程, 2009,17(1):191-195. LI B H, MA Y Y, LIU R, et al.. A predictive centroiding algorithm of unmatched stars for star sensor [J]. Opt. Precision Eng., 2009, 17(1):191-195. (in Chinese)<td valign='top'>[13]李葆华, 刘国良, 刘睿,等. 天文导航中的星敏感器技术[J]. 光学 精密工程, 2009,17(7):1615-1620. LI B H, LIU G L, LIU R, et al.. Key techniques of star sensors for celestial navigation[J]. Opt. Precision Eng., 2009,17(7):1615-1620. (in Chinese)<td valign='top'>[14]张伟, 潘海斌, 鲍文卓,等. 星空背景数字图像的生成[J]. 光学 精密工程, 2009,17(3): 676-682. ZHANG W, PAN H B, BAO W ZH, et al.. Digital image generation of star map[J]. Opt. Precision Eng., 2009,17(3):676-682. (in Chinese)
0
浏览量
341
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构