浏览全部资源
扫码关注微信
1. 中国科学院 研究生院 北京,100039
2. 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
3. 国家气象局 空间天气监测与预警中心 北京,100081
收稿日期:2010-04-07,
修回日期:2010-05-28,
网络出版日期:2010-12-25,
纸质出版日期:2010-12-25
移动端阅览
何飞, 陈波, 张效信. 月基观测地球等离子体层极紫外辐射特性[J]. 光学精密工程, 2010,18(12): 2564-2573
HE Fei, CHEN Bo, ZHANG Xiao-xin. Moon-based imaging of earth plasmaspheric extreme ultraviolet radiation[J]. Editorial Office of Optics and Precision Engineering, 2010,18(12): 2564-2573
何飞, 陈波, 张效信. 月基观测地球等离子体层极紫外辐射特性[J]. 光学精密工程, 2010,18(12): 2564-2573 DOI: 10.3788/OPE.20101812.2564.
HE Fei, CHEN Bo, ZHANG Xiao-xin. Moon-based imaging of earth plasmaspheric extreme ultraviolet radiation[J]. Editorial Office of Optics and Precision Engineering, 2010,18(12): 2564-2573 DOI: 10.3788/OPE.20101812.2564.
研究了地球等离子体层的极紫外辐射特性
结果表明从月球上探测时地球等离子体层顶位于35 081.75 km以内
等离子体层结构的典型尺度量级为637.85 km
He
+
30.4 nm辐射强度为0.02~11.4 Rayleigh。讨论了月球轨道运动特性和月球表面环境特性
结果显示在一个月球公转周期内
总观测时间约为12个地球日
极紫外观测仪器对地指向的纬度最大偏移约为7
经度最大偏移约为6。对月面的极紫外辐射分析表明
太阳峰年月面散射的极紫外辐射强度约为2.0 Rayleigh
与地球等离子体层辐射量级相当。根据SELENE数据
描述了极紫外观测仪器所在的5个拟着陆区的地貌特征
证明了月面散射的极紫外辐射不会进入观测仪器
其中虹湾区的地形最为理想。根据Apollo-12和Apollo-15太阳风数据分析了月面质子和电子通量
结果显示在太阳峰年
一年内两者的总流量均为约510
15
cm
-2
。根据Apollo-12局地观测
在一个月球周期内
月面温度变化为80~390 K。得到的结果为月基极紫外观测仪器设计提供了重要依据。
The extreme ultraviolet radiation properties of the earth plasmasphere was firstly studied
which shows that the plasmapause is mainly located near 35 081.75 km
the typical scale of the plasmasphere structures is 637.85 km
and the He
+
30.4 nm emission intensity is between 0.02 and 11.4 Rayleigh when the plasmasphere is detected from the moon. Then
the orbital characteristics and surface environmental properties of the moon were described and it is pointed out that the total imaging period of an extreme ultraviolet imager is 12 d
in which the maximum latitudinal drift of the positioning of the camera is 7 while the maximum longitudinal drift is 6. The extreme ultraviolet radiation of the lunar surface was analyzed
and results indicate that the extreme ultraviolet radiation reflected by lunar surface is 2.0 Rayleigh at solar maximum
which has the same order in the magnitude as compared with the plasmasphere emission. Based on the SELENE observation data
topographic properties in the five planned landing sites were explored
it proves that the extreme ultraviolet radiation reflected by lunar surface in these sites can not enter the field of view of the camera. For the five sites
Sinus Iridum is the most ideal site for moon-based extreme ultraviolet imaging. The proton and electron fluxes on the lunar surface were analyzed using Apollo-12 and Apollo-15 SWC experiment data
results show that the total fluences of protons and electrons are both approximately 510
15
cm
-2
in one-year period. During a lunation
the lunar surface temperature changes from 80 K at lunar night to 390 K at lunar noon according to Apollo-12 observation. Above results provide an important basis for the design of moon-based extreme ultraviolet imagers.
FARRUGIA C J, GEISS J, YOUNG D T, et al.. GEOS-1 observations of low-energy ions in the earths plasmasphere: a study on composition, and temperature and density structure under quiet geomagnetic conditions [J]. Advances in Space Research, 1988,8(8):25-33.[2] FARRUGIA C J, GEISS J, BALSIGER H, et al.. The composition, and temperature and density structure of cold ions in the quiet terrestrial plasmasphere: GEOS-1 results [J]. Journal of Geophysical Research, 1989,94(A9):11865-11891.[3] BRANDT J C. Interplanetary gas, VI, on diffuse extreme ultraviolet helium radiation in the night and day sky [J]. The Astrophysical Journal, 1961,134(2):975-980.[4] CARPENTER D L. Remote sensing the Earths plasmasphere [J]. Radio Science Bulletin, 2004,308(1):13-29.[5] YOSHIKAWA I, NAKAMURA M, HIRAHARA M, et al.. Observation of the He II emission from the plasmasphere by a newly developed EUV telescope on board sounding rocket S-520-19[J]. Journal of Geophysical Research, 1997,102(A9):19897-19902.[6] NAKAMURA M, YOSHIKAWA I, YAMAZAKI A, et al.. Terrestrial plasmaspheric imaging by an extreme ultraviolet scanner on Planet-B [J]. Geophysical Research Letters, 2000,27(2):141-144.[7] SANDEL B R, BROADFOOT A L, CURTIS C C, et al.. The extreme ultraviolet imager investigation for the image mission [J]. Space Science Reviews, 2000,91(1):197-242.[8] SANDEL B R, GOLDSTEIN J, GALLAGHER D L, et al.. Extreme ultraviolet imager observations of the structure and dynamics of the plasmasphere [J]. Space Science Reviews, 2003,109(1):25-46.[9] YOSHIKAWA I, YAMAZAKI A, MURAKAMI G, et al.. Telescope of extreme ultraviolet (TEX) onboard SELENE: science from the Moon [J]. Earth, Planets and Space, 2008,60(4):407-416.[10] YOSHIKAWA I, MURAKAMI G, OGAWA G, et al.. Plasmaspheric EUV image seen from the lunar orbit: initial result of extreme ultraviolet telescope onboard KAGUYA spacecraft [J]. Journal of Geophysical Research, 2010,115(A04217):1-5.[11] BURCH J L, MITCHELL D G, SANDEL B R, et al.. Global dynamics of the plasmasphere and ring current during magnetic storms [J]. Geophysical Research Letters, 2001,28(6):1159-1162.[12] SANDEL B R, KING R A, FORRESTER W T, et al.. Initial results from the IMAGE extreme ultraviolet imager [J]. Geophysical Research Letters, 2001,28(8):1439-1442.[13] GOLDSTEIN J, SPIRO R W, REIFF P H, et al.. IMF-driven overshielding electric field and the origin of the plasmaspheric shoulder of May 24, 2000 [J]. Geophysical Research Letters, 2002, 29(16):661-664.[14] GOLDSTEIN J, SANDEL B R, FORRESTER W T, et al.. IMF-driven plasmasphere erosion of 10 July 2000 [J]. Geophysical Research Letters, 2003, 30(3):461-464.[15] GOLDSTEIN J, SANDEL B R, HAIRSTON M R, et al.. Control of plasmaspheric dynamics by both convection and subauroral polarization stream [J]. Geophysical Research Letters, 2003,30(24):SSC61-SSC65.[16] SPASOJEVIC' M, GOLDSTEIN J, CARPENTER D L, et al.. Global response of the plasmasphere to a geomagnetic disturbance [J]. Journal of Geophysical Research, 2003,108(A9),1340:SMP401-SMP414.[17] OBER D M, HORWITZ J L, GALLAGHER D L. Formation of density troughs embedded in the outer plasmasphere by subauroral ion drift events [J]. Journal of Geophysical Research, 1997,102(A7):595-602.[18] HE F, ZHANG X X, CHEN B, et al.. Calculation of the extreme ultraviolet radiation of the earth's plasmasphere [J]. Science China Technological Sciences, 2010,53(1):200-205.[19] ARCHINAL B A,ROSIEK M R,KIRK R L,et al.. The Unified Lunar Control Network 2005 . U.S. Geological Survey,2006 . http://pubs.usgs. gov/of/2006/1367/ULCN2005-OpenFile.pdf.[20] MEIER R R. Ultraviolet spectroscopy and remote sensing of the upper atmosphere [J]. Space Science Reviews, 1991,58(1):1-185.[21] FLYNN B C, VALLERGA J V, GLADSTONE G R, et al.. Lunar reflectivity from Extreme Ultraviolet Explorer imaging and spectroscopy of the full Moon [J]. Geophysical Research Letters, 1998,25(17):3253-3256.[22] ARAKI H, TAZAWA S, NODA H, et al.. Observations of the lunar topography by the laser altimeter LALT on board Japanese lunar explorer SELENE [J]. Advances in Space Research, 2008,42(2):317-322.[23] BOTHER V, DAGLIS I A. Space Weather-Physics and Effects [M]. Chichester: Praxis Publishing Ltd., 2007.[24] CHAO J K, WU D J, LIN C H, et al.. Models for the size and shape of the earths magnetopause and bow shock . Proceedings of COSPAR-34 on Space Weather Study Using Multipoint Techniques, Taiwan, 2002:127-136.[25] GEISS J, B HLER F, CERUTTI H, et al.. The APOLLO SWC experiment: results, conclusions, consequences [J]. Space Science Reviews, 2004,110(2):307-335.[26] 薛炳森,叶宗海. 太阳质子事件长期预报方法研究 [J]. 载人航天, 2007,7(3):47-53. XUE B S, YE Z H. Research on the long-term prediction method of solar proton events [J]. Manned Spaceflight, 2007,7(3):47-53. (In Chinese)[27] CREMERS C J, BIRKEBAK R C, WHITE J E. Lunar surface temperatures from Apollo12 [J]. The Moon, 1971,3(3):346-351.
0
浏览量
362
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构