浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2. 中国科学院 研究生院 北京,100039
收稿日期:2010-02-09,
修回日期:2010-04-14,
网络出版日期:2011-01-22,
纸质出版日期:2011-01-22
移动端阅览
王永刚, 崔天刚, 马文生, 陈斌, 陈波. 弹性球状小磨头加工WolterⅠ型掠入射反射镜的去除函数[J]. 光学精密工程, 2010,19(1): 10-16
WANG Yong-gang, CUI Tian-gang, MA Wen-sheng, CHEN Bin, CHEN Bo. Removal function for fabrication of WolterⅠgrazing mirror by elastic ball tool[J]. Editorial Office of Optics and Precision Engineering, 2010,19(1): 10-16
王永刚, 崔天刚, 马文生, 陈斌, 陈波. 弹性球状小磨头加工WolterⅠ型掠入射反射镜的去除函数[J]. 光学精密工程, 2010,19(1): 10-16 DOI: 10.3788/OPE.20111901.0010.
WANG Yong-gang, CUI Tian-gang, MA Wen-sheng, CHEN Bin, CHEN Bo. Removal function for fabrication of WolterⅠgrazing mirror by elastic ball tool[J]. Editorial Office of Optics and Precision Engineering, 2010,19(1): 10-16 DOI: 10.3788/OPE.20111901.0010.
提出用弹性球状小磨头以旋进方式加工WolterⅠ型反射镜的柱面内表面
根据Preston方程、Hertz接触理论和掠入射反射镜特殊的柱面结构
推导出基于旋偏动模式的磨头去除函数理论模型。实验结果表明
理论去除函数曲线与实验曲线的均方根距离偏差
为0.101 22 m
偏差比值
为9.8%。分析验证了不同旋偏角对去除函数的影响并与理论模拟结果进行了比较。结果显示
随着旋偏角的增大
最大去除值位置逐渐向
y
轴正方向偏移。不同的旋偏角
最大理论去除深度与最大实际去除深度的均方根偏差为0.201 m;最大理论去除位置与最大实际去除位置的均方根偏差为0.255 mm。旋偏角越大
材料去除量就越多
去除函数也越显对称。实验结果很好地验证了去除函数理论模型的准确性
该模型可指导WolterⅠ型掠入射反射镜的加工
实现确定性材料去除。
A novel technology for fabricating WolterⅠgrazing mirrors by an elastic ball tool was described in this paper. According to the Hertz contacting theory and Preston equation
a removal function model for tool movement on a cylinder surface was established based on the precession motion. The comparison of the theoretica1 model and the experimental results shows that the RMS distance warp between the theoretica1 removal function curve and the experimental curve is 0.101 22 m
and its deflection ratio is 9.8%. Furthermore
the effect of different precession angles on the removal function was validated
which points out that the larger the precession angle is
the more the material are removed and the max removal point moves to the centre of contact area closely. With different precession angles
the rms deviation of max removal depth is 0.201 m and the rms position deviation of max removal depth is 0.255 mm. The experimental results verify the feasibility of the theoretica1 model of removel function.The model can direct the fabrication of WolterⅠgrazing mirrors and can realize the deterministic material removal.
JAMES R L, DEXTER D, CHRISTOPHER E, et al.. Solar X-ray imager for GOES [J]. SPIE, 2004,5171:65-76.[2] 王权陡,余景池,张峰. 数控抛光中不同运动方式下小跑光盘抛光特性之比较 [J]. 光学 精密工程,1999,7(5):73-79. WANG Q D, YU J CH, ZHANG F. Polishing performance comparison of small polishing pad worked in different motion model in computer controlled optical polishing [J]. Opt. Precision Eng., 1999,7(5):73-79. (in Chinese)[3] 王权陡,刘民才,张红霞. 数控抛光技术中抛光盘的去除函数 [J]. 光学技术,2000,26(1):32-34. WANG Q D, LIU M C, ZHANG H X. Removing function of polishing pad in computer controlled optical polishing [J]. Optical Technique, 2000,26(1):32-34. (in Chinese)[4] 王旭,张学军. 固着磨料加工碳化硅反射镜的微观理论模型 [J]. 光学 精密工程,2009,17(3):513-518. WANG X, ZHANG X J. Micro theoretical model for grinding SiC m irror with fixed abrasive [J]. Opt. Precision Eng., 2009,17(3):513-518. (in Chinese)[5] 王旭,张峰,张学军. 固着磨料抛光碳化硅反射镜的去除函数 [J]. 光学 精密工程,2009,17(5):951-957. WANG X, ZHANG F, ZHANG X J. Removal function of computer controlled polishing SiC mirror with fixed abrasive [J]. Opt. Precision Eng., 2009,17(5):951-957. (in Chinese)[6] 王旭,张学军,徐领娣,等. 固着磨料加工碳化硅反射镜的实验 [J]. 光学 精密工程,2009,17(4):771-777. WANG X, ZHANG X J, XU L D, et al.. Experiment of grinding SiC mirror with fixed abrasive [J]. Opt. Precision Eng., 2009,17(4): 771-777. (in Chinese)[7] YACOBS S D. International innovations in optical finishing [J]. SPIE, 2004,5523:264-272.[8] WALKER D D, BEAUCAMP A T H, BROOKS D, et al.. Novel CNC polishing process for control of form and texture on aspheric surfaces [J]. SPIE, 2002,4767:99-105.[9] KIM D W, KIM S W. Novel simulation technique for efficient fabrication of 2 m class hexagonal segments for extremely large telescope primary mirrors [J]. SPIE, 2005,5638:48-59.[10] KIM D W, PARK W H, KIM S W, et al.. Parametric modeling of edge effects for polishing tool influence functions [J]. Optics Express, 2009,17(7):5656-5665.[11] WALKER D D, BEAUCAMP A T H, BINGHAM R G, et al.. The precessions process for efficient production of aspheric optics for large telescopes and their instrumentation [J]. SPIE, 2003,4842:73-84.[12] KIM D W, KIM S W. Static tool influence function for fabrication simulation of hexagonal mirror segments for extremely large telescopes [J]. Optics Express, 2005,13(3):910-917.[13] WALKER D D. The 'Precessions tooling for polishing and figuring flat, spherical and aspheric surfaces [J]. Optics Express, 2003,11(8):958-964.[14] 黄炎. 局部应力及其应用[M]. 北京:机械工业出版社,1996:591-615. HUANG Y. Local Stress and its Application [M]. Beijing: Machinery Industry Press, 1996: 591-615.(in Chinese)[15] JOHNSON K L. Contact Mechanics [M]. Cambridge: Cambridge University Press, 1985.[16] 崔天刚,王永刚,马冬梅,等. Wolter I型反射镜面形在线检测装置设计[J]. 光学 精密工程,2010,18(8):1801-1806. CUI T G, WANG Y G, MA D M, et al.. Design of surface profile online measuring device used for Wolter Type I mirror [J]. Opt.Precision Eng., 2010,18(8):1801-1806.(in Chinese)
0
浏览量
723
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构