浏览全部资源
扫码关注微信
中国工程物理研究院 激光聚变研究中心,四川 绵阳 621900
收稿日期:2010-04-30,
修回日期:2010-08-10,
网络出版日期:2011-01-22,
纸质出版日期:2011-01-22
移动端阅览
马小军, 高党忠, 杨蒙生, 赵学森, 叶成钢, 唐永建. 应用白光共焦光谱测量金属薄膜厚度[J]. 光学精密工程, 2010,19(1): 17-22
MA Xiao-jun, GAO Dang-zhong, YANG Meng-sheng, ZHAO Xue-sen, YE Cheng-gang, TANG Yong-jian. Measurement of thickness of metal thin film by using chromatic confocal spectral technology[J]. Editorial Office of Optics and Precision Engineering, 2010,19(1): 17-22
马小军, 高党忠, 杨蒙生, 赵学森, 叶成钢, 唐永建. 应用白光共焦光谱测量金属薄膜厚度[J]. 光学精密工程, 2010,19(1): 17-22 DOI: 10.3788/OPE.20111901.0017.
MA Xiao-jun, GAO Dang-zhong, YANG Meng-sheng, ZHAO Xue-sen, YE Cheng-gang, TANG Yong-jian. Measurement of thickness of metal thin film by using chromatic confocal spectral technology[J]. Editorial Office of Optics and Precision Engineering, 2010,19(1): 17-22 DOI: 10.3788/OPE.20111901.0017.
为了精确测量自支撑金属薄膜厚度及其厚度分布
提出了基于白光共焦光谱传感器的金属薄膜厚度测量技术。介绍了该技术的测量原理及系统结构
研究了系统的测量不确定度。利用相向对顶安装的白光共焦传感器组、精密位移平台并结合自制的薄膜厚度校准样品
实现了对厚度为10~100 m的自支撑金属薄膜的厚度及厚度分布的精确测量;通过研究系统的传感器测量不确定度、薄膜厚度校准样品不确定度、上下传感器安装误差及系统重复性测量误差
获得了系统的测量不确定度数据。试验结果表明
该系统的测量不确定度在0.12 m左右
基本满足惯性约束聚变(ICF)靶参数测量所需的稳定性好、测量精度高、非破坏性测量等要求。
To precisely measure the thickness and thickness distribution of a self-supporting metal film
the measurement technology based on a chromatic confocal spectral sensor was established. The measurement principle and system structure were descripted in detail
and the measurement uncertainty was analyzed. The thickness and thickness distribution of the self-supporting metal film with the thickness between 10-100 m were tested using the sensor group
precise displacement platform and precise calibrated samples. The measurement uncertainty was evaluated based on analysis of sensor accuracy
the uncertainty of calibration sample thickness
the positioning accuracy of two sensors and the system repetition uncertainty. Experimental results indicate that the measurement uncertainty is about 0.12 m
which satisfies the requirements of Inertial Confinement Fusion(ICF) for target parameter measurement in high stabilization
high precision and non-destruction.
常铁强,张均,张家泰,等.激光等离子体相互作用与激光聚变[M]. 长沙:湖南科学技术出版社, 1991. CHANG T Q, ZHANG J, ZHANG J T, et al.. Laser-Plasma Interaction and Laser Fusion[M].Changsha: Hunan Science and Technology Press,1991.[2] 江少恩, 李三伟. 辐射温度与其驱动冲击波速度的定标关系研究[J]. 物理学报,2009,58(12):8440-8447. JIANG SH E, LI S W. Investigation of scaling laws for radiation temperature with shock wave velocity in AL[J]. Acta Physica Sinica, 2009,58(12):8440-8447.(in Chinese)[3] NOBILE A, DROPINSKI S C, EDWARDS J M, et al.. Fabrication and characterization of targets for shock propagation and radiation burnthrough measurements on Be-0.9% AT.% Cu alloy[J].Fusion Science and Technology,2004,45(2):127-136.[4] 王孝坤, 王丽辉, 张学军. 干涉法实时测量浅度非球面技术[J]. 光学 精密工程,2008,16(2):184-189. WANG X K, WANG L H, ZHANG X J. Testing of weak asphere surface by real-time interferometer[J]. Opt. Precision Eng.,2008,16(2):184-189.(in Chinese)[5] HARASAKI A, SCHMIT J, JAMES C, et al.. Offset of coherent envelope position due to phase change on reflection[J]. Applied Optics,2001,40(13):2102-2106.[6] DOI T, TOYODA K, TANIMURA Y. Effects of phase changes on reflection and their wavelength dependence in optical profilometry[J]. Applied Optics, 1997,36(28):7157-7161.[7] SUNGDO C, PAUL C L, ZHU l l, et al.. Nontranslational three-dimensional profilometry by chromatic confocal microscopy with dynamically configurable micromirror scanning[J]. Applied Optics, 2000,39(16):2605-2613.[8] KEBIN S, P LI P, YIN S Z, et al.. Chromatic confocal microscopy using supercontinuum light[J]. Optics Express, 2004,12(10):2096-2101.[9] GARZON J, GHARBI T, MENESES J. Determination of the refractive index and thickness in tissues by chromatic confocal microscopy[J]. Revista Colombiana de Fisica, 2008,40(1):140-142.[10] CHUN B S, KIM K, GWEON D. Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope[J]. Review of Scientific Instruments,2009,7(80):73706- 73712.
0
浏览量
349
下载量
15
CSCD
关联资源
相关文章
相关作者
相关机构