浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室,吉林 长春,130033
2. 中国科学院 研究生院 北京,100039
收稿日期:2010-01-13,
修回日期:2010-05-27,
网络出版日期:2011-01-22,
纸质出版日期:2011-01-22
移动端阅览
赵阳, 巩岩. 深紫外光刻照明系统光束整形单元的设计[J]. 光学精密工程, 2010,19(1): 29-34
ZHAO Yang, GONG Yan. Design of beam shaping unit for deep ultraviolet lithographic illumination system[J]. Editorial Office of Optics and Precision Engineering, 2010,19(1): 29-34
赵阳, 巩岩. 深紫外光刻照明系统光束整形单元的设计[J]. 光学精密工程, 2010,19(1): 29-34 DOI: 10.3788/OPE.20111901.0029.
ZHAO Yang, GONG Yan. Design of beam shaping unit for deep ultraviolet lithographic illumination system[J]. Editorial Office of Optics and Precision Engineering, 2010,19(1): 29-34 DOI: 10.3788/OPE.20111901.0029.
为了使曝光波长为193 nm的深紫外光刻系统能够制备曝光线宽为90 nm及以下节点的集成电路芯片
设计了采用环形照明模式且部分相干因子
连续可调
能满足不同曝光线宽要求的光刻照明系统光束整形单元。首先
用几何光学定律和三角函数推导了轴锥镜移动距离与光束放大倍率之间的函数关系;根据对变倍凸轮的合理性和装调公差灵敏度的分析
确定了轴锥镜组参数的变化范围
完成了变倍镜组与轴锥镜组合的光束整形单元的设计。最后
在组合系统后面加入了可连续变倍的缩束系统
实现了
的连续可调。设计结果显示
在环形照明模式下
归一化的环宽
和外环直径
outer
分别在[0.25
1]和[0.4
1]
内连续可调
满足设计要求。
To manufacture the integrated circuit chips at 90 nm or below their nodes by using a 193 nm exposed wavelength deep ultraviolet lithography
a beam shaping unit for the lithographic illumination system was designed to achieve the annular illumination and the continuous adjustment of a partial coherent factor
to meet the requirements of different exposed line widths. Firstly
the function relationships between the moving distance of axicon and the light beam magnification were deduced by using the laws of geometric optics and trigonometric functions
and the ranges of parameters of axicon were determined after analyzing the feasibility of zoom cam and the tolerance sensitivities. Then
the axicon and zoom lens were combined to implement the beam shaping unit. Finally
a kind of reducing scale zoom lens was designed to add into the combined system to achieve the continuously adjustment of the
. The result shows that the normalized annular width
and the outer diameter of annulus
outer
can be adjusted continuously in the range of [0.25
1] and [0.4
1]
respectively
which meets the needs of design.
林强, 金春水, 向鹏, 等. 离轴照明Schwarzchild 投影物镜的计算机辅助装调方法[J]. 光学 精密工程, 2003,11(2):144-150. LIN Q, JIN CH SH, XIANG P, et al.. Computer-aided alignment of Schwarzchild objective with off-axis illumination [J]. Opt. Precision Eng., 2003,11(2):144-150. (in Chinese)[2] RYULI H, NOBUHITO T, KIMIO I, et al..Optimazation of source distribution for half-wavelength DOE[J]. SPIE, 2006,6283:62838U.[3] SARA L, UMBERTO I, ROBERT C. Analysis of the combined impact of the laser spectrum, illuminator miscalibrations, and lens aberrations on the 90nm technology node imaging with off axis illuminations[J]. SPIE, 2006,6154:615434.[4] HSIUNG H, LING C L, LIN C L. Novel illumination apertures for resolution-enhanced technology and through-pitch critical dimension control[J]. SPIE, 2005,5754:1395-1404.[5] 刘万里, 欧阳健飞, 曲兴华. 激光光束入射角度变化对角锥棱镜测量精度的影响[J]. 光学 精密工程, 2009,17(2):286-291. LIU W L, OUYANG J F, QU X H. Effect of incident laser beam angle varying on cube corner retro-reflector measurement accuracy [J]. Opt. Precision Eng., 2009,17(2):286-291. (in Chinese)[6] 刘华, 卢振武. 可横向分光的大接收角非成像式聚光系统[J]. 光学 精密工程,2009,17(12):2881-2886. LIU H, LU ZH W. Lateral splittable non-imaging concentrators with large acceptable angles [J]. Opt. Precision Eng., 2009,17(12):2881-2886. (in Chinese)[7] 赵峻彦. 棱镜几何参数的类复向量解法[J]. 光学 精密工程,1995,3(2):38-41. ZHAO J Y. Calculation of the geometrical parameters of prisms with the similar complex vector method [J]. Opt. Precision Eng., 1995,3(2):38-41. (in Chinese)[8] RIOUX M, TREMBLAY R, BELANGER P A. Linear,annular,and radial focusing with axicons and applications to laser machining[J]. Applied Optics, 1978,17:1532-1536.[9] 张巍, 巩岩. 投影光刻离轴照明用衍射光学元件设计[J]. 光学 精密工程,2008,16(11):2081-2086. ZHANG W, GONG Y. Design of diffractive optical elements for off-axis illumination in projection lithography [J]. Opt. Precision Eng., 2008,16(11):2081-2086. (in Chinese)[10] HIDEKI K, KAVASAKI. Method and apparatus for illuminating a surface using a projection imaging apparatus:US,6563567 . 2003.[11] GARY Z, STEVE H. Illumination source mapping and optimization with resist based process metrics for low k1 imaging[J]. SPIE, 2004,5377:369-380.[12] SABITA R, DOUG V D B, FUNG C, et al..Extending aggressive low-k1 design rule requirements for 90 and 65 nm nodes via simultaneous optimization of numerical aperture,illumination and optical proximity correction[J]. SPIE, 2005,4(2):023003.[13] CREIGHTON M A. Influence of illumination non-uniformity on pattern fidelity[J]. SPIE, 2005,5754:1519-1528.[14] PARTLO W N,TOMPKINS P J,DEVA P G, et al.. Depth of focus and resolution enhancement for i-ling and deep-UV lithography using annular illumination[J]. SPIE, 1993,1927:137-142.[15] RICHARD R, GUY D, JAN M, et al.. Photolithography using the AERIARTM illuminator in a variable NA wafer stepper[J]. SPIE, 1996,2726:54-70.
0
浏览量
772
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构