浏览全部资源
扫码关注微信
1. 中国科学院 研究生院,北京 100049
2. 中国科学院 上海微系统与信息技术研究所 传感技术联合国家重点实验室,上海 200050
收稿日期:2010-03-09,
修回日期:2010-04-12,
网络出版日期:2011-01-22,
纸质出版日期:2011-01-22
移动端阅览
刘翔, 皋华敏, 李铁, 周萍, 王跃林. 低电压下静电力驱动的数字微流控芯片[J]. 光学精密工程, 2010,19(1): 97-102
LIU Xiang, GAO Hua-min, LI Tie, ZHOU Ping, WANG Yue-lin. Digital microfluidic chip by electrostatic manipulation in low voltage[J]. Editorial Office of Optics and Precision Engineering, 2010,19(1): 97-102
刘翔, 皋华敏, 李铁, 周萍, 王跃林. 低电压下静电力驱动的数字微流控芯片[J]. 光学精密工程, 2010,19(1): 97-102 DOI: 10.3788/OPE.20111901.0097.
LIU Xiang, GAO Hua-min, LI Tie, ZHOU Ping, WANG Yue-lin. Digital microfluidic chip by electrostatic manipulation in low voltage[J]. Editorial Office of Optics and Precision Engineering, 2010,19(1): 97-102 DOI: 10.3788/OPE.20111901.0097.
设计并制作了一种基于静电力驱动的数字微流控芯片
用于构建芯片实验室。介绍了静电力驱动原理和芯片制作工艺流程
搭建了驱动检测实验平台。该芯片采用硅作衬底
氧化硅作绝缘层
TiW/Au为驱动电极阵列
氮化硅作介质层
碳氟聚合物为疏水层。由于采用开放式的结构
只需单层共平面控制电极
简化了工艺流程
优化了器件结构;而驱动电极阵列嵌入在氧化硅中
改善了减小介质层厚度时介质层对金属的台阶覆盖性
减少了电极边沿突起引起的边界击穿。另外
采用较薄的高质量介质层和疏水性能好的疏水膜层
大大降低了液滴驱动电压。实验显示
在20 V驱动电压下
该工艺可实现液滴按程序设定方式在二维平面内流畅运动
最大运动速度达96 mm/s。提出的芯片制作工艺简单
与IC工艺兼容
可应用于生化分析芯片实验室系统。
A digital microfluidic chip by electrostatic manipulation was designed and fabricated for a micro total analysis system. The principle of the electrostatic manipulation was proposed and the fabrication processes and experimental platform were demonstrated. For the chip
the silicon was taken as a substrate
a silicon oxide film as the insulating layer
a TiW/Au film as the electrode array
a Si
3
N
4
film as the dielectric layer
and the fluorocarbon polymer as the hydrophobic layer. With an open structure instead of complex sandwich structure
the chip just needed a coplanar controlling electrode with one layer
so the process was simplified greatly. As the electrode array was embeded in the SiO
2
the electric leakage from poor step coverage and dielectric breakdown at the margin were prevented.Furthermore
with thin dielectric layer and fine hydrophobic layer
the manipulating voltage was reduced greatly. Experiments show that
by controlling the sequence of voltage to the electrode array
the droplet can be transported smoothly in the two-dimension planes with a programmable manner at a low voltage of 20 V
and the maximum speed has reached 96 mm/s. The digital microfluidic chip can be used in a Lab-on-chip due to its simple structure and IC compatible fabrication processes.
HARRISON D J, MANZ A, FAN Z H, et al.. Capillary electrophoresis and sample injection systems integrated on a planar glass chip [J]. Analytical Chemistry, 1992,64(17):1926-1932.[2] WEST J, BECKER M, TOMBRINK S, et al.. Micro total analysis systems: latest achievements [J]. Analytical Chemistry,2008,80(12):4403-4419.[3] 刘冲,梁勇,李经民,等. 微流控芯片操作机器人碰撞保护装置的设计[J]. 光学 精密工程, 2009,17(1):138-144. LIU C, LIANG Y, LI J M, et al.. Design of collision protection system of handling robot for microfluidic chip [J]. Opt. Precision Eng., 2009,17(1):138-144. (in Chinese)[4] MARK D, HAEBERLE S, ROTH G, et al.. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications [J]. Chemical Society Reviews, 2010,39:1153-1182.[5] 叶芳,黎毅力,张建辉. Y形流管无阀压电泵驱动器的动态研究[J]. 光学 精密工程, 2008,16(12):2358-2365. YE F, LI Y L, ZHANG J H. Dynamic research on actuator for valveless piezoelectric pump with Y-shape tubes [J]. Opt. Precision Eng., 2008,16(12):2358-2365. (in Chinese)[6] 廖锡昌,郑慧斐,袁敏,等. 发光二极管诱导荧光微芯片分析检测器的研制[J]. 光学 精密工程, 2009,17(12):2906-2911. LIAO X CH, ZHENG H F, YUAN M, et al.. High-power light-emitting-diode induced fluorescence detector for microfluidic chip analysis [J]. Opt. Precision Eng., 2009,17(12):2906-2911. (in Chinese)[7] PIYASENA M E, NEWBY R, MILLER T J, et al.. Electroosmotically driven microfluidic actuators [J]. Sensors and Actuators B, 2009,141:263-269.[8] SCHWARTZ J H, VYKOUKAL J V, GASCOY-NE P R C. Droplet-based chemistry on a programmable micro-chip [J]. Lab on a Chip,2004,4:11-17.[9] XIA H M, WAN S Y M, CHU C, et al.. Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers [J]. Lab on a Chip, 2005,5:748-755.[10] LUO J K, FU Y Q, LI Y, et al.. Moving-part-free microfluidic systems for lab-on-a-chip [J]. Journal of Micromechanics and Microengineering, 2009,19:054001(14pp).[11] WHEELER A R. Putting electrowetting to work [J]. Science, 2008,322(5901):539-540.[12] FAN S K, HUANG P W, WANG T T, et al.. Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting [J]. Lab on a Chip, 2008,8:1325-1331.[13] LEBRASSEUR E, AL-HAQ M I, CHOI W K, et al.. Two-dimensional electrostatic actuation of droplets using a single electrode panel and development of disposable plastic film card [J]. Sensors and Actuators A, 2007,136:358-366.[14] KAWAMOTO H, HAYASHI S. Fundamental investigation on electrostatic travelling-wave transport of a liquid drop [J]. Journal of Physics D: Applied Physics, 2006,39:418-423.[15] MOON H, CHO S K, GARRELL L, et al.. Low voltage electrowetting-on-dielectric [J]. Journal of Applied Physics, 2002,92:4080-4087.
0
浏览量
656
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构