浏览全部资源
扫码关注微信
1. 哈尔滨工业大学 MEMS中心,黑龙江 哈尔滨 150001
2. 哈尔滨工业大学 微系统与微结构加工教育部重点实验室,黑龙江 哈尔滨,150001
收稿日期:2010-03-17,
修回日期:2010-06-02,
网络出版日期:2011-01-22,
纸质出版日期:2011-01-22
移动端阅览
赵振刚, 刘晓为, 王鑫, 金海燕, 谭晓昀. 基于555多谐振荡器检测的碳纳米管湿敏传感器[J]. 光学精密工程, 2010,19(1): 118-123
ZHAO Zhen-gang, LIU Xiao-wei, WANG Xin, JIN Hai-yan, TAN Xiao-yun. Carbon nanotube sensors based on 555 multivibrators[J]. Editorial Office of Optics and Precision Engineering, 2010,19(1): 118-123
赵振刚, 刘晓为, 王鑫, 金海燕, 谭晓昀. 基于555多谐振荡器检测的碳纳米管湿敏传感器[J]. 光学精密工程, 2010,19(1): 118-123 DOI: 10.3788/OPE.20111901.0118.
ZHAO Zhen-gang, LIU Xiao-wei, WANG Xin, JIN Hai-yan, TAN Xiao-yun. Carbon nanotube sensors based on 555 multivibrators[J]. Editorial Office of Optics and Precision Engineering, 2010,19(1): 118-123 DOI: 10.3788/OPE.20111901.0118.
针对使用仪器检测电容型碳纳米管湿度传感器的电容信号不利于传感器的使用与推广问题
提出了一种基于555多谐振荡式电路检测的电容型碳纳米管湿度传感器。首先
分析了传感器工作原理以及检测电路的检测原理
设计并制作了电容型碳纳米管湿度传感器;然后
分别使用仪器及检测电路对传感器进行测试;最后
对传感器响应时间进行了测试与分析。实验结果表明
该传感器在环境相对湿度从11%变化到97%过程中
电容相对灵敏度为905%
输出频率相对灵敏度为889%
两者较为吻合
表明该电路能很好地将电容信号转化为频率信号输出。另外
传感器对湿度的响应时间约为4 s
恢复时间约为18 s
功耗约为12 mW
具有功耗低、响应速度快等优点。
The capacitive signals of capacitive carbon nanotube humidity sensors are usually tested by measuring instruments
which restricts the uses and developments of the sensors seriously. Focusing on this problem
one kind of capacitive carbon nanotube humidity sensor based on a 555 multivibrator was presented. Firstly
the principle of the sensor and the detecting circuit were discussed
and the sensor was designed and fabricated. Then
the sensor was tested by both the RCL apparatus and the proposed circuit
respectively. Finally
the response and recovery time of the sensor was tested. The testing results demonstrate that when the Relative Humidities (RH) surrounding the sensor change from 11% to 97%
the capacitive sensitivity and the output frequency sensitivity of the sensor are 905% and 889%
respectively. The frequency sensitivity is closed to the capacitive sensitivity
which means the circuit can well change capacitive signals to frequency signals.Furthermore
the adesorption and desorption time of the sensor is about 4 s and 18 s
respectively
which shows the sensor can offer low power consumption and fast response and has potential application prospects.
JUHASZ L,MIZSEI J. Humidity sensor structures with thin film porous alumina for on-chip integration [J]. Thin Solid Films, 2009,517:6198-6201.[2] LI H L,ZHANG J,TAO B R, et al.. Investigation of capacitive humidity sensing behavior of silicon nanowires [J]. Physica, 2009, E(41):600-604.[3] TAO B R,ZHANG J,MIAO F J, et al.. Capacitive humidity sensors based on Ni/SiNWs nanocomposites [J]. Sensors and Actuator, 2009,B(136):144-150.[4] SUN A H,HUAN L,LI Y. Study on humidity sensing property based on TiO2 porous film and polystyrene sulfonic sodium [J]. Sensors and Actuator, 2009,B(139):543-547.[5] ZHANG J G,PANG CH,FANG ZH, et al.. Micro integrated pressure, temperature, and relative humidity sensor using adhesive bonding with SU28 [J]. Opt. Precision Eng., 2009,17(6):1350-1354.[6] LV X,LI Y,LI P, et al.. A resistive-type humidity sensor based on crosslinked polyelectrolyte prepared by UV irradiation [J]. Sensors and Actuator, 2009,B(135):581-586.[7] GU L,HUANG Q A,QIN M. A novel capacitive-type humidity sensor using CMOS fabrication technology[J]. Sensors and Actuators, 2004, B(99):491-498.[8] IIJIMA S. Helical microtubules of graphitic carbon [J]. Nature,1991,354:56-58.[9] YOO K P,LIM L T,MIN N K, et al.. Novel resistive-type humidity sensor based on multiwall carbon nanotube/polyimide composite films [J]. Sensors and Actuators, 2010, B(145):120-125.[10] LIU L T,YE X Y,WU K, et al.. Humidity sensitivity of carbon nanotube and poly(Dimethyldiallylammonium Chloride) composite films [J]. IEEE Sensors Journal, 2009,9(10):1308-1314.[11] YU H, CAO T, ZHOU L, et al.. Layer-by-Layer assembly and humidity sensitive behavior of poly(ethyleneimine)/multiwall carbon nanotube composite films [J]. Sensors and Actuators, 2006,B(119):512-515.[12] 李应良, 潘武. 射频系统中MEMS谐振器和滤波器 [J]. 光学 精密工程, 2004,12(1):47-54. LI Y L, PAN W. MEMS resonators and filters in RF systems [J]. Opt. Precision Eng., 2004,12(1):47-54. (in Chinese)[13] 梁晋涛, 刘诗斌, 刘君华,等. 碳纳米管压阻微悬臂梁红外热探测器 [J]. 光学 精密工程, 2008,16(4):682-688. LIANG J T, LIU SH B, LIU J H, et al.. Micro-cantilever thermal infrared detector with carbon nanotubes [J]. Opt. Precision Eng., 2008,16(4):682-688. (in Chinese)
0
浏览量
522
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构