浏览全部资源
扫码关注微信
Institute of Laser Physics,Siberian Branch of Russian Academy of Sciences Novosibirsk,Russia,630090
收稿日期:2010-10-08,
修回日期:2010-10-30,
网络出版日期:2011-02-22,
纸质出版日期:2011-02-22
移动端阅览
RAZHEV A M, CHURKIN D S. 脉冲诱导放电气体激光器[J]. 光学精密工程, 2011,19(2): 237-251
RAZHEV A M, CHURKIN D S. Pulsed inductive discharge gas lasers[J]. Editorial Office of Optics and Precision Engineering, 2011,19(2): 237-251
RAZHEV A M, CHURKIN D S. 脉冲诱导放电气体激光器[J]. 光学精密工程, 2011,19(2): 237-251 DOI: 10.3788/OPE.20111902.0237.
RAZHEV A M, CHURKIN D S. Pulsed inductive discharge gas lasers[J]. Editorial Office of Optics and Precision Engineering, 2011,19(2): 237-251 DOI: 10.3788/OPE.20111902.0237.
研究了一种实现新放电方法:诱导圆筒放电的可能性。该放电方法基于不同的粒子数反转机理
使用不同的原子和分子传能模式泵浦气体激光器。研制了用于气体中的脉冲诱导圆筒放电(脉冲感应耦合等离子体)激励系统
并对其进行了实验研究。首次实现了基于原子和分子不同传能模式的4种脉冲诱导激光器
其激励特性是光束发散角小
不同脉冲间的非稳定性在1%以内。首先研制出了基于F原子电子传能模式的红光激光器
这一激光器使用脉冲感应圆筒放电;通过在2.66~46.55 kPa气压下激励He-F
2
(NF
3
SF
6
) 混合气获得了在624~755 nm波段的8种波长的输出;FI激光器的脉冲能量为2.6 mJ
脉冲持续时间为80 ns
光束发散角为0.4 mrad。同时研制出了基于基态CO
2
分子传能的10.6 m远红外激光器
该感应激光器在脉冲持续时间(FWHM)为160 s时
获得的最大能量为152 mJ。另外
研制出了近远红外区的基于氢气分子中电子传能的脉冲感应放电氢气激光器
激射谱线为0.835
0.89
1.116和1.122 m
脉冲持续时间为20 ns时获得的脉冲峰值功率为11 kW。最后成功研制了波长为337.1 nm和357.7 nm的基于自限制电子传能过程
C
3
u
B
3
g
的脉冲感应紫外氮气激光器
在低压为133 Pa的感应氮气激光器中获得的最大能量输出为4.5 mJ
峰值功率为300 kW
脉冲持续时间为(151) ns
测得的感应氮气激光器的光束发散角为0.3 mrad。
The investigation results for the possibility of a pulsed inductive cylindrical discharge as a new method of pumping gas lasers operating at different transitions of atoms and molecules with different mechanisms of formation of inversion population are presented. The excitation systems of a pulsed inductive cylindrical discharge (pulsed inductively coupled plasma) in the gases are developed and experimentally investigated. At the first time
four kinds of pulsed inductive lasers on the different transitions of atoms and molecules are created. Characteristic features of the emission of pulsed inductive lasers are ring-shaped laser beam with low divergence and pulse-to-pulse instability is within 1%. Firstly
the red laser on the electronic transitions of atomic fluorine (FI) pumped by a pulsed inductive cylindrical discharge is developed. Lasing at 8 wavelengths in the spectral area 624-755 nm is obtained by exciting He-F
2
(NF
3
SF
6
) gas mixtures in a pressure range from 2.66-46.55 kPa. The energy of the FI laser is 2.6 mJ at pulse durations of 80 ns and the divergence is 0.4 mrad. Secondly
the far infrared laser on the vibrational-rotational transitions of CO
2
molecules in the ground electronic state with a wavelength of 10.6 m is created. The maximum energy of this inductive laser is 152 mJ at the pulse duration of 160 s (FWHM). Thirdly
the pulsed inductive discharge H
2
laser at the electronic transitions of hydrogen molecules in near IR laser is also developed. The laser action on four lines with 0.835 m
0.89 m
1.116 m and 1.122 m is obtained
and its pulsed peak power is 11 kW at duration of 20 ns.Furthermore
the pulsed inductive UV nitrogen laser on self-limited electronic transitions
C
3
u
B
3
g
at 337.1 nm and 357.7 nm is created
and its maximum generation energy is 4.5 mJ at low pressures 133 Pa and pulsed peak power is 300 kW at pulse duration (151) ns. The measured divergence of the inductive nitrogen laser radiation is 0.3 mrad.
BELL W E. Ring discharge excitation of gas ion lasers [J]. Appl. Phys. Lett., 1965,7(7):190-191.[2] GOLDBOROUGH J P,HODGES E B,BELL W E. RF induction of CW visible laser transition in ionized gases [J]. Appl. Phys. Lett., 1966,8(6):137-139.[3] KISELEVSKII L I, SKUTOV D K,SOKOLOV S A. Primenenie visokochastotnogo indukzionnogo razrjada dla poluchenija lasernoi generazii v neprerivnom regime [J]. Zh. Prikl. Spektroskopiya, 1974,21(5):951-955. (in Russian)[4] RAZHEV A M, MKHITARYAN V M,CHURKIN D S. 703 to 731 nm FI laser excited by a transverse inductive discharge [J]. JETP Lett., 2005,82(5):259-262.[5] RAZHEV A M, CHURKIN D S,ZAVYALOV A S. Pulsed inductive discharge molecular hydrogen laser [J]. Vestnik NSU, Seria Fizika, 2009,4(3):1219. (in Russian)[6] RAZHEV A M,CHURKIN D S. Pulsed inductive discharge CO2 laser [J]. Opt. Commun., 2009,282(7):1354-1357.[7] RAZHEV A M,CHURKIN D S. Inductive ultraviolet nitrogen laser [J]. JETP Lett., 2007,86(6):420-423.[8] RAZHEV A M,CHURKIN D S,ZHUPIKOV A A. Study of the UV emission of an inductive nitrogen laser [J]. Quantum Electronics, 2009,39(10):901-905.[9] KOVACS M A, ULTEE C J. Visible laser action in fluorine I [J]. Appl. Phys. Lett., 1970,17(1):39-40.[10] JEFFERS W Q,WISWALL C E. Laser action in atomic based on collisional dissociation of HF [J]. Appl. Phys. Lett., 1970,17(10):444-447.[11] FLORIN A E,JENSEN R J. Pulsed laser oscillation at 0.7311 from F atoms [J]. IEEE J. Quantum Electronics, 1971,7(3):472.[12] ENGLISH J R, III, GARDNER H C, MERRITT J A. Pulsed stimulated emission from N, C, Cl, and F atoms [J]. IEEE J. Quantum Electron., 1972,8(11):843-844.[13] SUTTON D G, GALVAN L, VALENZUELA P R, et al.. Atomic laser action in rare gas-SF6 mixtures [J]. IEEE J. Quantum Electron., 1975,11(1):54-57.[14] BIGIO I J,BEGLEY R F. High-power visible laser action in neutral atomic fluorine [J]. Appl. Phys. Lett., 1976,28(5):263-264.[15] HOCKER L O,PHI T B. Pressure dependence of the atomic fluorine laser transition intensities [J]. Appl. Phys. Lett., 1976,29(8):493-494.[16] LOREE T R,SZE R C. The atomic fluorine laser: spectral pressure dependence [J]. Optics Communications, 1977,21(2):255-257.[17] LISITSIN V N,RAZHEV A M. Powerful laser high-pressure on red lines of fluorine [J]. JTPh Letters 1977,3(17):862-864. (in Russian)[18] HOCKER L O. High-resolution study of the helium-fluorine laser [J]. J. Opt. Soc. Am., 1978,68(2):262-265.[19] SUMIDA S, OBARA M,FUJIOKA T. Novel neutral atomic lines in a high-pressure mixture of F2 and He [J]. J. Appl. Phys., 1979,50(6):3884-3887. [20] LAWLER J E, PARKER J W,ANDERSON L W,et al.. Experimental investigation of the atomic fluorine laser [J]. IEEE J. Quantum. Electron., 1979, QE-15(7):609-613.[21] KOPRINKOV I G, STAMENOV K V, STANKOV K A. Intense laser generation from an atomic-fluorine laser [J]. Appl. Phys. B,1984,33(1):235-238.[22] SERAFETINIDES A A, RICKWOOD K R. Efficient multi and single line atomic fluorine lasers [J]. Appl. Phys. B, 1987,44(1):119-123.[23] ZAEFERANI M S, PARVIN P, SADIGHI R. Pressure dependence of the spectral lines of a high power, high pressure atomic fluorine laser pumped by a charge transfer from He+2 [J]. Optics and Laser Technology, 1996,28(3):203-205.[24] PARVIN P, MEHRAVARAN H, JALEH B. Spectral lines of the atomic-fluorine laser from 2psi (absolute) to 5.5 atm [J]. Applied Optics, 2001,40(21):3532-3538.[25] PARVIN P, MEHRAVARAN H, DORRANIAN D. Changeover in the molecular and atomic fluorine laser transitions [J]. Applied Optics, 2010,49(15):2741-2748.[26] SVELTO O. Principles of Lasers [M]. Tamburini editore, Milan, Italy, 1972, Plenum Publishing Co., USA, 1976.[27] WITTEMAN W J. The CO2 Laser [M]. Springer-Verlag, Berlin Heidelberg, 1987:360.[28] GERRY E T. Pulsed-molecular nitrogen laser theory [J]. Appl. Phys. Lett., 1965,7(1):6-8.[29] ALI A W. A study of the nitrogen laser power density and some design considerations [J]. Appl. Opt., 1969,8(5):993-996.[30] ALI A W, KOLB A C,ANDERSON A D. Theory of the pulsed molecular Nitrogen laser [J]. Appl. Opt., 1967,6(12):2115-2119.[31] LEONARD D A. Saturation of the molecular nitrogen second positive laser transition [J]. Appl. Phys. Lett., 1965,7(1):4-6.[32] JEUNEHOMME M, DUNCAN A B F. Lifetime measurements of some excited states of nitrogen, nitric oxide, and formaldehyde [J]. J. Chem. Phys., 1964,41(6):1692-1699.[33] BAZHULIN P A, KNYAZEV I N, PETRASH G G. Stimulated radiation from hydrogen and deuterium molecules in the near infrared region [J]. JETP, 1965,49(1):16-23.[34] BOCKASTEN K, LUNDHOLM T, ANDRADE O. Laser lines in atomic and molecular hydrogen [J]. J. Opt. Soc. Am.,1966,56(9):1260-1261.[35] HEARD H G. High power ultraviolet gas laser [J]. Bull. Amer. Phys. Soc., 1964,9:65.[36] SHIPMAN J. Traveling wave excitation of high power gas lasers [J]. Appl. Phys. Lett., 1967,10(1):3-4.[37] WANG C P. Simple fast-discharge device for high-power pulsed lasers [J]. Rev. Sci. Instrum., 1976,47(1):92-95.[38] CARTWRITE D C. Total Cross Sections for the Excitation of the Triplet States in Molecular Nitrogen [J]. Phys. Rev., 1970,2(4):1331-1348.[39] KASLIN V M, PETRASH G G. Rotational structure of the ultraviolet generation of the molecular nitrogen [J]. JETP Letters, 1966,3(2):88-92.
0
浏览量
278
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构