浏览全部资源
扫码关注微信
1. Turkish Scientific and Technological Research Council, Marmara Research Center,Materials Institute, Gebze/Kocaeli,Turkey
2. Institute of Physics Azerbaijan National Academy of Sciences, Baku,Azerbaijan
收稿日期:2010-10-08,
修回日期:2010-10-30,
网络出版日期:2011-02-22,
纸质出版日期:2011-02-22
移动端阅览
ALLAKHVERDIEV K, BAYKARA T. GaSe及相关晶体的历史、现状与未来:具有特异非线性光学特性的层状材料[J]. 光学精密工程, 2011,19(2): 260-272
ALLAKHVERDIEV K, BAYKARA T. Past, present and future of GaSe and related crystal-layered materials with outstanding nonlinear optical properties[J]. Editorial Office of Optics and Precision Engineering, 2011,19(2): 260-272
ALLAKHVERDIEV K, BAYKARA T. GaSe及相关晶体的历史、现状与未来:具有特异非线性光学特性的层状材料[J]. 光学精密工程, 2011,19(2): 260-272 DOI: 10.3788/OPE.20111902.0260.
ALLAKHVERDIEV K, BAYKARA T. Past, present and future of GaSe and related crystal-layered materials with outstanding nonlinear optical properties[J]. Editorial Office of Optics and Precision Engineering, 2011,19(2): 260-272 DOI: 10.3788/OPE.20111902.0260.
概述了高度各向异性的
尤其是无掺杂和掺杂的层状半导体GaSe和相关晶体InSe、GaS和GaSe-GaS(固溶液)的结构特性、光学特性和非线性光学特性的实验研究结果
同时概述了由共焦拉曼和光致发光显微镜研究得到的结果和由声波降解法和激光消融技术得到的GaSe纳米粒的光学性质。重点讨论了-GaSe的性质
指出其具有最大的光学二阶非线性系数
并可结晶成4种不同的多型体
(
)
且每个晶胞有以不同数目和排列方式的层状结构。研究认为
在红外和太赫兹光谱波段
GaSe可以被看作是最有应用前景的非线性晶体之一。已发表的1700多篇关于材料物理性质的论文也指出
在THz波段
GaSe是一种具有特异非线性光学特性的材料。通过共焦拉曼显微镜的实验研究
讨论了晶体的域结构和非线性光学性质。除了探讨这些材料最重要的物理性质
还进一步研究了在主边缘附近的光吸收
在红外和太赫兹波段的光致发光、非线性光学性质以及它们的纳米物理性质
这些研究对理解二维晶体结构和其物理性质之间的联系是必要的。由于GaSe及GaSe型晶体具有包含Se-Ga-Ga-Se-共价键的单一四层结构
因而它们的纳米粒表现出一些特殊的性质。一些GaSe型晶体(InSe
GaTe)的带隙宽度在1.2~1.5 eV之间
这使得它们及其纳米粒很适合用作光伏材料。
The experimental and studied results of the structural
optical and nonlinear optical properties on the highly anisotropic especially un-doped and doped layered semiconductor GaSe (gallium selenide) and related crystals
InSe
GaS and GaSe-GaS (solid solutions) are overviewed. It includes also the investigation results on optical properties performed by confocal Raman and photoluminescence (PL) microscopy. Some experimental results on optical properties of GaSe nanoparticles obtained via ultrasonication and laser ablation methods are considered also.The properties of -GaSe is emphasized
which has one of the highest coefficient
(2)
of optical second-order nonlinearity and are crystallized into four different polytypes (
)
containing different number and arrangement of layers per unit cell. It is shown that GaSe may be considered as one of the best crystals for nonlinear applications in the IR range. More than 1 700 papers describe the physical properties of the GaAs and indicate that it is an outstanding material for applications to the teraherz (THz) spectral range. The domain structure of the crystal in connection with the Nonlinea Optical(NLO) properties is discussed by confocal Raman microscopy experiments. In spite most important physical properties of these materials are mainly investigated
further studies of optical absorption near the fundamental edge
PL
NLO properties in the IR and THz ranges as well as physical properties of their nanoparticles are necessary to understand the connection between the 2-D crystal structure and the physical properties. It is known that the nanoparticles of GaSe and GaSe- type crystals are highly interesting because they have a single tetra layer structure consisting of covalently bond Se-Ga-Ga-Se- tetra layers. Some of GaSe-type crystals have band gaps in the range of 1.2-1.5 eV (InSe
GaTe) which make them and their nanoparticles suitable for photovoltaic applications.
ISMAILOV F I, GUSEINOVA E S, AKHUNDOV G A. Optical absorption edge of GaS and GaSe single crystals [J]. Sov. Phys. Sol. State, 1963,5(12):3620-3621.[2] MASCHKE K, LEVY F. New Series, Group III: Crystal and Solid State Physics [M]. Berlin: Springer-Verlag, 1983.[3] ALLAKHVERDIEV K,BAYKARA T,ELLIALTIOGLU S,et al.. Lattice vibrations of pure and doped GaSe[J]. Mater. Res. Bull., 2006,41(4):751-763.[4] ABDULLAEV G B, KULEVSKII L A, PROK-HOROV A M, et al.. A new effective material for nonlinear optica [J]. Sov. Phys.-JETP Lett.,1972,16(8):90-92.[5] SOKOLOV V I, SOLOMONOV Y F,SUBASHIEV V K. The nonlinear optical properties of gallium selenide[J]. Sov. Phys. Sol. State, 1975,17(7):1256-1259.[6] ABDULLAEV G B, KULEVSKII Y F, NIKLES P V, et al.. Difference frequency generation in a GaSe crystal with continuous tuning in the 560-1050 1/cm range[J]. Sov. J. Quant. Electron., 1976,6(1):88-90.[7] (a)GOUSKOV A, CAMASSEL J,GOUSKOV L. Growth and characterization of III-Vi layered crystals like GaSe, GaTe, InSe, GaSe1-xTe<em>x and GaxIn1-xSe [J]. Prog. Crystal Growth and Charact., 1982, 5(4): 323-413. (b)ALLAKHVERDIEV K R,TAGYEV M M. Infrared investigation of the GaS<em>xSe1-x System[J]. Phys. Stat. Sol., 1977,39:K111-K113. (c)ABDULLAEV G B, ALLAKHVERDIEV K R, NANI R K,et al.. Neutron diffraction, infrared, and Raman scattering investigation of the layered GaS<em>xSe1-x system[J]. Phys. Stat. Sol., 1979,(a)53(2):549-555. (d)ALLAKHVERDIEV K R,BABAEV S S,TAGYEV M M. Lattice reflection spectra of GaSe1-xTe<em>x solid solutions[J]. Soviet Physics - Solid State, 1980,22(11):1972-1974. (e)ALLAKHVERDIEV K R,BABAEV S S, VODOPYANOV L K,et al.. Raman spectra of GaSe1-xTe<em>x crystals[J]. Soviet Physics-Solid State, 1980,22(10):126-127. (f)ALLAKHVERDIEV K R, ISMAILOV A, BABAEV B,et al.. Far-infrared absorption spectra of -InSe[J]. Phys. Stat. Sol. (b), 1993,176(1):K39-K40. ALALKHVERDIEV K R, ELLIALTIOGLU S,ISMAILOV A. Raman scattering in layer indium selenide under pressure[J]. Solid State Commun., 1993,87(8):675-678.[8] ABDULLAEV G B, ALLAKHVERDIEV K R, KARASEV M E,et al.. Efficient generation of the second harmonic of CO2 laser radiation in a GaSe crystal[J]. Sov. J. Quant. Electron., 1989,19(4):494.[9] VODOPYANOV K L, KULEVSKII L A, VOE-VODIN V G,et al.. High efficiency middle IR parametric superradiance in ZnGeP2 and GaSe crystals pumped by an erbium laser[J]. Opt. Commun., 83(5-6):322-326.[10] FERNELIUS N C. Properties of gallium selenide single crystal[J]. Prog. Crystal Growth and Charact., 1994,28(4):275-353.[11] VODOPYANOV K L,VOEVODIN V G. 2.8 m laser pumped type I and type II travelling-wave optical parametric generator in GaSe[J]. Opt. Commun., 1995,114(3-4):333-335.[12] VODOPYNAOV K L,VOEVODIN V G. Self-stabilized holographic recording in LiNbO3:Fe crystals[J]. Opt. Commun., 1996,117(3-4):235-240.[13] NIKOGOSYAN D N. Properties of Optical and Laser-Related Materials[M]. Chichester, England: John Wiley & Sons, 1997.[14] SINGH N B,SUHRE D R, BALAKRISHNA V,et al.. Far-infrared conversion materials: Gallium selenide for far-infrared conversion applications[J]. Prog. Crystal Growth and Charact., 1998,37(1):47-102.[15] KADOR L, HAARER D, ALLAKHVERDIEV K R,et al.. Phase‐matched second‐harmonic generation at 789.5 nm in a GaSe crystal[J]. Appl. Phys. Lett., 1996,69:731-733.[16] ALLAKHVERDIEV K R, YETIS M , ZBEK S,et al.. Effective nonlinear GaSe crystal. Optical properties and applications[J]. Laser Phys., 2009,19(5):1092-1104.[17] SALAEV E Y, ALLAKHVERDIEV K R. Dynamics and Static Nonlinear Effects in Layered GaSe- type Crystals[M]. Baku: Elm Publisher, 1993.[18] FAN Y, BAUER M, KADOR L,et al.. Photoluminescence frequency up-conversion in GaSe single crystals as studied by confocal microscopy[J]. J. Appl. Phys., 2002,91:1081-1086.[19] PEREZ LEON C, KADOR L, ALLAKHVERDIEV K R,et al.. Comparison of the layered semiconductors GaSe, GaS, and GaSe1-xS<em>x by Raman and photoluminescence spectroscopy[J]. J. Appl. Phys., 2005,98:103103.[20] ZOTOVA I B,DING Y J. Spectral measurements of two-photon absorption coefficients for CdSe and GaSe crystals[J]. Appl. Optics, 2001,40(36):6654-6658.[21] ALLAKHVERDIEV K R, BAYKARA T, JOOSTEN S,et al.. Anisotropy of two-photon absorption in gallium selenide at 1 064 nm[J]. Opt. Commun., 1986,261(1):60-64.[22] VODOPYANOV K L, MIROV S B, VOEVODIN V G,et al.. Two-photon absorption in GaSe and CdGeAs2 [J]. Opt. Commun., 1998,155(1-3):47-50.[23] KULIBEKOV A M,ALLAKHVERDIEV K, GUSEINOVA D A,et al.. Optical absorption in GaSe under high-density ultrashort laser pulses[J]. Opt. Commun., 2004,239(1-3):193-198.[24] GRIVICKAS V, BIKBAJEVAS V, ALLAKHVERDIEV K,et al.. Two-photon indirect absorption in GaSe[J]. J. Phys.: Conf. Ser., 2008,100:042008.[25] SHI W, DING Y J, FERNELIUS N,et al.. Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal[J]. Optics Lett., 2002,27(16):1454-1456.[26] SHI W, DING Y J. Generation of backward terahertz waves in GaSe crystals[J]. Optics Lett., 2005,30(14):1861-1863.[27] TOCHITSKY S Y, SUNG C, TRUBNICK S E,et al.. High-power tunable, 0.5-3 THz radiation source based on nonlinear difference frequency mixing of CO2 laser lines[J]. JOSA B, 2007,24(9):2509-2516.[28] TANABE T, SUTO K, NISHIZAWA J, et al.. THz generation in GaSe crystal . Proceedings of the Institute of Physics Conference Series: Compound Semiconductors, Tokyo, Japan,2005:85-89.[29] FUMIKAZU S, TADAO T, YUTAKA O, et al.. THz generation using GaSe crystals with different carrier concentrations[J]. J. Japanese Assoc. Cryst. Growth, 2006,33:177-181.[30] (a)IONIN A, KINJAJAVESKIJ I, KLIMACHEV Y,et al.. CO laser frequency conversion in nonlinear ZnGeP2 and GaSe crystals . LIMIS 2010, Changchun, Book of Abstract, 2010:20. (b)CHIHWEI L. The optical properties of sulfur-doped GaSe crystals in terahertz frequency range . LIMIS 2010, Changchun, Book of Abstract, 2010:81. (c)ANDREEV Y M. Solid solution non-linear crystals for efficient laser frequency conversion, LIMIS 2010, Changchun, Book of Abstract, 2010:28. (d)TARASENKO V F, SITNIKOV A G,PANCHENKO A N, et al.. Single-pulse CO2-laser with frequency doubler based on GaSe and GaSe0,7S0,3 single crystals . LIMIS 2010, Changchun, Book of Abstract, 2010:52.[31] DUNN K J,BUNDY F P. Pressure‐induced metallic and superconducting state of GaSe[J]. Appl. Phys. Lett., 1980,36(8):709-710.[32] SCHWARZ U. Untersuchung von drckinduzier-ten phasenumwandlungen bei valenzverbindungen und intermetalischen phasen mit bindungen zwischen metalischen elementen . Darmstadt: dem Fachbereich Chemie der Teshnischen ?niversitat Darmstadt, 1998.[33] TAKUMI M, HIRATA A, UEDA T, et al.. Structural phase transitions of Ga2Se3 and GaSe under high pressure[J]. Phys. Stat. Sol. (b),2001,223(2):423-426.[34] ALLAKHVERDIEV K R. Pressure induced ph-ase transitions in GaSe-, TlGaSe2- and CdGa2S4- type crystals . Proceedings of the International Conference on Frontiers of High Pressure Research II: Application of High Pressure to Low-Dimensional Novel Electronic Materials, Fort Collins, USA:2001:99-118. [35] ERRANDONEA D, SANCHE-ROYO J F, SEGURA A,et al.. Investigation of acceptor levels and hole scattering mechanisms in p-gallium selenide by means of transport measurements under pressure[J]. High Pressure Research, 1998,16(1):13-26.[36] IWAMURA Y, MORIYAMA N, WATANABE N. Anomalously large shift of absorption edge of GaSe-based layered crystal by applied electric field[J]. Jpn. J. Appl. Phys., 1990,29:L975-L976.[37] IWAMURA Y, MORIYAMA M, WATANABE N. New light modulator using GaSe layered crystal[J]. Jpn. J. Appl. Phys., 1991,30:L42-L44.[38] ALLAKHVERDIEV K, ISMAILOV N, SALAEVA Z, et al.. Reflective light modulator based on -GaSe crystal[J]. Appl. Optics, 2002,41(1):148-153.[39] ERRANDONEA D, MANJON F J, PELLIGER J,et al.. Direct to indirect crossover in IIIVI layered compounds and alloys under pressure[J]. Phys. Stat. Sol. (b), 1999,211(1):33-38.[40] MANFREDOTTI C, MURRI R, VASANELI L. GaSe as a nuclear particle detector[J]. Nuclear Instruments and Methods, 1974,114:349-353.[41] MANFREDOTTI C,MURRI R,QUIRNI A, VASANEL L. A particular application of GaSe semiconductor detectors in neutrino experiments at CERN[J]. Nuclear Instruments and Methods, 1975,131:457-462.[42] CASTELLANO A. GaSe detectors for X-ray beams[J]. Appl. Phys. Lett., 1986,48:298-299.[43] YAMAZAKI T, NAKATANI H, SAKAI E. GaSe crystals as a nuclear particle detector . Proceedings of the Third Workshop on Radiation Detectors and Their Uses (KEK 88-5), Ibaraki, Japan,1988:192-195.[44] SAKAI E,NAKATANI H, TATSUYAMA C, et al.. Average energy needed to produce an electron-hole pair in GaSe nuclear particle detectors[J]. IEEE Transactions on Nuclear Science, 1988,35(1):85-88.[45] ARUTYUNAN V M, DIMAKSYAN M L, ELBAKYAN V L,et al.. X- ray sensitivity of gallium monoselenide[J]. Sov. Phys.-Semiconductors, 1989,23:315-316.[46] YAMAZAKI T,NAKATANI H,IKEDA N. Characteristics of impurity-doped GaSe radiation detectors[J]. Jpn. J. Appl. Phys., 1993,32:1857-1858.[47] YAMAZAKI T, TERAYAMA K, SHIMAZAKI T,et al.. Impurity-doped GaSe radiation detector evaluated at 100C[J]. Jpn. J. Appl. Phys., 1997,36:378-379.[48] BALKANSKI M, JULIEN C, EMERY J Y. Gallium Selenide crystals as a nuclear particle detector[J]. J. Power Science, 1989,26:615-617.[49] BUCHER E. Photoelectrochemistry and Photovoltaics of Layered Semiconductors[M]. Dordrecht: Kluwer Academic Publishers, 1992.[50] ENDO M, KIM C, TAKEDA T,et al.. On a possibility to use layered GaSe- type crystals as a nuclear particle detectors . Report of Shinshu University, Faculty of Engineering, Nagano, Japan:1997:129-132.[51] ALLAKHVERDIEV K, HANNA S, KULIBEKOV A (GULUBAYOV), et al.. Room-temperature mid-, and far-infrared absorption and electrical properties of gaSe and TlInS2 crystals[J]. Int. J. of IR and Miillimeter Waves, 2005,26:61-75. [52] STOLL S L, GILLAN E G, BARRON A R. Chemical vapor deposition of gallium selenide and indium selenide nanoparticles[J]. Chem. Vap. Deposition, 1996,2(5):182-184.[53] ALLAKHVERDIEV K, HAGEN J, SALAEVA Z. On a possibility to form small crystallites of layered gallium selenide via ultrasonic treatment[J]. Phys. Stat. Sol. (a), 1997,163(1):121-127.[54] CHIKAN V, KELLEY D F. Synthesis of highly luminescent GaSe nanoparticles[J]. Nano Letters, 2002,2(2):141-145.[55] TU H, CHIKAN V, KELLEY D F. Spectroscopy of GaSe nanoparticle aggregates[J]. J. Phys. Chem.B,2004,108(15):4701-4710.[56] KAWAMURA T, MATSUISHI K, ONARI S,et al.. Optical Properties of GaSe nano particles fabricated by laser ablation. Book of Abstarcts. International Conference on the Physics of Semiconductors, Vienna, Austria: ICPS, 2006:35.[57] KLEMM W, VOGEL H U. Uber die chalkogenide von gallium und indium[J]. Zeitschriftfr Anorganische Chemie, 1934, 219:45-64.[58] TERHELL J, LIETH R, van-der-VLEUTEN W. New polytypes in vapour grown GaSe[J]. Mater. Res. Bull.,1975,10(6):577-581.[59] SUZUKI H, MORI R. Phase study on binary system Ga-Se[J]. Jpn. J. Appl. Phys., 1974,13:417-423.[60] BECK A, MOOSER E. Apparatur zum ziehen von einkristallen von verbindungen mit leichtfluchtigen komponenten[J]. Helv. Phys. Acta, 1961,34:370-373.[61] AULICH E, BREBNER J L, MOOSER E. Indirect energy gap in GaSe and GaS[J]. Phys. Stat. Sol.,1969, 31:129-131.[62] CARDETTA V L,MANCHINI A M, RIZZO A. Melt growth of single crystal ingots of GaSe by Bridgman-Stockbargers method[J]. J. Cryst. Growth, 1972,16(2):183-185.[63] ALLAKHVERDIEV K. Optical properties and vibration spectra of layered and chained crystals of A3B6, A3B3C26 and their solid solutions . Baku:Institute of Physics Azerbaijan National Academy of Sciences, 1980.[64] ALLAKHVERDIEV K, FERNELIUS N, GASHIMZADE F, et al.. Anisotropy of optical absorption in GaSe studied by midinfrared spectroscopy[J]. J. Appl. Phys., 2003,93:3336-3339.[65] SCHL TER M. Die elektronische bandstruktur von hexagonalen GaSe[J]. Helv. Phys. Acta, 1972,45:73-76.[66] SCHL TER M,CAMASSEL J, KOHN S,et al.. Optical properties of GaSe and GaS<em>xSe1-x mixed crystals[J]. Phys. Rev. B,1976,13(8):3534-3547. [67] ALLAKHVERDIEV K, MUSTAFAEV N, SEID-RZAEVA N. Vibrational frequencies of the impurity atoms in layered GaSe[J]. Tr. J. Phys., 1996,20:1256-1265.[68] ALLAKHVERDIEV K R, BAYKARA T, KULIBEKOV A (Gulubayov), et al.. Corrected infrared Sellmeier coefficients for gallium selenide[J]. J. Appl. Phys., 2005,98:093515. [69] BAYANOV I M, DANIELS R,HEINZ P,et al.. Intense subpicosecond pulses tunable between 4 m and 20 m generated by an all-solid-state laser system[J]. Opt. Commun., 1994,113(1-3):99-104.[70] BHAR G C, DAS S, VODOPYANOV K L. Nonlinear optical laser devices using GaSe[J]. Appl. Phys. B, 1995,61(2):187-190.[71] ALLKAHVERDIEV K, CAMASSEL J, KURZ H, et al.. Quantum oscillations caused by laser pulses in layered - GaSe[J]. JETP Lett.,1990,51:164-166.[72] K TT W A, ALBRECHT W, KURZ H. Generation of coherent phonons in condensed media[J]. IEEE J. Quantum Electron., 1992,28(10):2434-2444.
0
浏览量
398
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构