浏览全部资源
扫码关注微信
High Current Electronics Institute Tomsk,Russia,634055
收稿日期:2010-10-08,
修回日期:2010-10-30,
网络出版日期:2011-02-22,
纸质出版日期:2011-02-22
移动端阅览
TARASENKO V F, BAKSHT E KH, BURACHENKO A G, LOMAEV M I, RYBKA D V, SHULEPOV M A, SOROKIN D A, SHUT'KO V. 超高功率体放电的形成及其应用[J]. 光学精密工程, 2011,19(2): 273-283
TARASENKO V F, BAKSHT E KH, BURACHENKO A G, LOMAEV M I, RYBKA D V, SHULEPOV M A, SOROKIN D A, SHUT'KO V. Formation of superpower volume discharges and their applications[J]. Editorial Office of Optics and Precision Engineering, 2011,19(2): 273-283
TARASENKO V F, BAKSHT E KH, BURACHENKO A G, LOMAEV M I, RYBKA D V, SHULEPOV M A, SOROKIN D A, SHUT'KO V. 超高功率体放电的形成及其应用[J]. 光学精密工程, 2011,19(2): 273-283 DOI: 10.3788/OPE.20111902.0273.
TARASENKO V F, BAKSHT E KH, BURACHENKO A G, LOMAEV M I, RYBKA D V, SHULEPOV M A, SOROKIN D A, SHUT'KO V. Formation of superpower volume discharges and their applications[J]. Editorial Office of Optics and Precision Engineering, 2011,19(2): 273-283 DOI: 10.3788/OPE.20111902.0273.
研究了氮气中的高压体(扩散)放电特性
实验中施加的极间隙脉冲电压达数百千伏
持续时间为数纳秒
上升时间为几个纳秒
给出了实验结果。研究了氦气压强为(0.4~2)10
5
Pa时
从扩散形式到火花放电的放电转换过程。确定了在氮气压强下电流幅度与逃逸电子束电流脉宽的关系。结果表明
导致隙间扩散放电的超短雪崩电子束(SAEB)对放电过程有重要的影响。在该压强下得出了SAEB瞬间产生相对放电电流的时延与压强的关系
根据该关系
时延随着压强增加而变化
并且在压强为210
5
Pa时最小
同时扩散放电电流脉冲的峰值随压强增加而减小。在0.510
5
Pa的压强下
使用刀片电极和6 cm长的N
2
∶SF
6
=10∶1的激活媒质
得到了输出能量为2 mJ、脉冲功率为0.55 MW的激光。最后
在大气压强下
对AlBe箔片进行了重复频率放电处理(REP)
其表层清除了碳而且氧原子以450 nm/300 pulse渗入箔片。
The experimental results on study of characteristics of the high-pressure volume (diffuse) discharges in nitrogen at applying to the interelectrode gap voltage pulse with the amplitude of hundreds kV
duration of several ns and the rise-time of fraction ns are presented. At the pressure range of nitrogen in (0.2-4)10
5
Pa
the discharge transformation from the diffuse form to the spark is investigated. Dependencies of the current amplitude and FWHM of the runaway electron beam current on nitrogen pressure are determined. It is shown that the generation of the Supershort Avalanche Electron Beam (SAEB) leading to the formation of diffuse discharge in the gap has a significant influence on the development of the discharge. At the pressures indicated above
the dependence of the time delay of SAEBs moment generating relatively discharge current beginning on pressure are obtained. According to this dependence
the time delay changes as pressure increases and it is minimal at pressure of 210
5
Pa. Also
it is shown that the maximum peak value of diffuse discharge current pulse decreases with increasing pressure. At a pressure of 0.510
5
Pa with the use of blade electrodes and the N
2
∶SF
6
=10∶1 active medium of length 6 cm
the output laser energy of 2 mJ is achieved for the pulse power of 0.55 MW. It is reported that during the treatment of the AlBe foil by the Runaway Electron Preionized(REP) discharge in atmospheric pressure air
its surface layer is cleaned from carbon
and atoms of oxygen penetrate into the foil (by 450 nm per 300 pulses).
BAKSHT E KH,RYBKA D V,LOMAEV M I,et al.. Study of emission of a volume nanosecond discharge plasma in xenon, krypton and argon at high pressures[J]. Quantum Electronics, 2006,36(6):576-580.[2] BAKSHT E K,BURACHENKO A G, TARASENKO V F. Lasing in nitrogen pumped by a runaway-electron-preionised diffuse discharge[J]. Quantum Electronics, 2009,39(12):1107-1111.[3] SHULEPOV M A. Modification of the nearsurface layers of a copper foil under the action of a volume gas discharge in air at atmospheric pressure[J]. Technical Physics Letters, 2008,34(4):296-299. [4] KOSTYRYA I D,TARASENKO V F. Formation of a volume discharge in air atmospheric pressure upon application of nanosecond high-voltage pulses[J]. Russian Physics Journal, 2004,47(12):1314-1316.[5] TARASENKO V F. Generation of supershort avalanche electron beams and formation of diffuse discharges in different gases at high pressure[J]. Plasma Devises and Operation, 2008,16(4):267-298.[6] TARASENKO V F, ORLOVSKII V M,SHUNAL-ILOV S A. Forming of an electron beam and a volume discharge in air at atmospheric pressure[J]. Russian Physics Journal, 2003,46(3):325-327.[7] BAKSHT E KH. Runaway-electron-preionized diffuse discharge at atmospheric pressure and its application[J]. J. Physics. D.: Applied Physics,2009,42:185201.[8] NOGGLE R C,KRIDER E P,WAYLAND J R,et al.. A Search for X Rays from Helium and Air Discharges at Atmospheric Pressure[J]. J. Appl. Phys., 1968,39(10):4746-4748.[9] TARASOVA L A,KHUDYAKOVA L N. X-ray at pulsed discharges in air[J]. Soviet J. Tekhnicheskoi Physiki, 1969,39(8):1530-1533. (in Russian)[10] ZAGULOV F YA. RADAN small-sized pulsed-repetitive high-current accelerators of electrons[J]. Pribory i Tekhnika Experimenta, 1989,32(2):146-149. (in Russian)[11] LOMAEV M I. Radiative characteristics of nitrogen upon excitation by volume discharge initiated by runaway electron beam[J]. Optical and Spectroscopy, 2009,107(1):33-40.[12] BAKSHT E K. Nanosecond discharge in sulfur hexafluoride and the generation of an ultrashort avalanche electron beam[J]. Laser Physics, 2008,18(6):732-737.
0
浏览量
707
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构