浏览全部资源
扫码关注微信
1. 交通大学 电子物理系,中国 新竹 30010
2. Institute of Monitoring of Climatic and Ecological Systems of Siberian Branch of Russian Academy of Sciences, Tomsk Russia
收稿日期:2010-10-08,
修回日期:2010-10-31,
网络出版日期:2011-02-22,
纸质出版日期:2011-02-22
移动端阅览
罗志伟, 古新安, 朱韦臻, 唐维聪, ANDREEV YURY, LANSKII Grigory, MOROZOV Alexander, ZUEV Vladimir. 掺硫硒化镓晶体在太赫兹波段的光学特性[J]. 光学精密工程, 2011,19(2): 354-359
LUO Zhi-wei, GU Xin-an, ZHU Wei-chen, TANG Wei-cong, ANDREEV YURY, LANSKII Grigory, MOROZOV Alexander, ZUEV Vladimir. Optical properties of GaSe∶S crystals in terahertz frequency range[J]. Editorial Office of Optics and Precision Engineering, 2011,19(2): 354-359
罗志伟, 古新安, 朱韦臻, 唐维聪, ANDREEV YURY, LANSKII Grigory, MOROZOV Alexander, ZUEV Vladimir. 掺硫硒化镓晶体在太赫兹波段的光学特性[J]. 光学精密工程, 2011,19(2): 354-359 DOI: 10.3788/OPE.20111902.0354.
LUO Zhi-wei, GU Xin-an, ZHU Wei-chen, TANG Wei-cong, ANDREEV YURY, LANSKII Grigory, MOROZOV Alexander, ZUEV Vladimir. Optical properties of GaSe∶S crystals in terahertz frequency range[J]. Editorial Office of Optics and Precision Engineering, 2011,19(2): 354-359 DOI: 10.3788/OPE.20111902.0354.
利用太赫兹时域光谱技术测量了掺硫硒化镓(GaSe
1-
x
S
x
)晶体在太赫兹波段的光学参数
包括折射系数、吸收系数等。使用自由空间电光取样法获得了太赫兹电磁波的脉冲波形
对不同硫掺杂量的硒化镓晶体进行了研究
在硫的掺杂量为0
0.01
0.14
0.26
0.37时
在0.2~2.0 THz测得了GaSe
1-
x
S
x
的折射系数、吸收系数等光学参数。此外还在吸收光谱上观察到
E
'
(2)
和
E
(2)
两个声子振动模态
其强度与频率会随着硫的掺杂量而改变
且即使是微量的硫掺杂也会影响吸收光谱上的声子振动模态。最后
在相位匹配ee-e的条件下
模拟了利用锁模钛蓝宝石激光使此类晶体产生太赫兹辐射的可能性。
The frequency-dependent optical constants of GaSe∶S crystals
refractive indexes
and obsorption conficients
were measured by using the terahertz time-domain spectroscopy. By the temporal-profile measurements of the terahertz pulse
the ordinary refractive index and absorption coefficients of GaSe
1-
x
S
x
(
x
=0
0.01
0.14
0.26
0.37) crystals in the range of 0.2-2.0 THz were obtained directly. The vibration modes of two phonons (
E
'
(2)
and
E
(2)
) on the absorption spectra were measured
in which their intensities and frequencies change with the doped amounts of sulfur. Furthermore
for the first time to our knowledge
the possibility of ee-e down-conversion in the THz range was demonstrated by a simulation.
ZHANG X C, HU B B, DARROW J T, et al.. Generation of femtosecond electromagnetic pulses from semiconductor surfaces [J]. Appl. Phys. Lett., 1990,56:1011-1013.[2] DAVIES A G, LINFIELD E H,JOHNSTON M B. The development of terahertz sources and their applications [J]. Phys. Med. Biol., 2002,47:3679-3689.[3] KLAPPENBERGER F, RENK K F. Transient-pulse nonlinear spectroscopy with the radiation of a multimode THz gas laser [J]. Int. J. of Infrar. and Millim. Waves, 2003,24:1405-1414.[4] CARR G L, MICHAEL C M, WAYNE R M, et al.. High-power terahertz radiation from relativistic electrons [J]. Nature,2002, 420:153-156.[5] KOEHLER R,TREDICUCCI A, BELTRAM F, et al..Terahertz semiconductor-heterostructure laser [J]. Nature, 2002, 417:156-159.[6] DMITRIEV V G, GURZADYAN G G, NIKOGOSYAN D N. Handbook for Nonlinear Crystals [M]. Berlin:Springer,1997:166-182.[7] FERNELIUS N C. Properties of gallium selenide single crystal [J]. Prog. Cryst. Growth and Charact., 1994, 28:275-353.[8] SHI W, DING Y J. A monochromatic and high-power terahertz source tunable in the ranges of 2.7-38.4 and 58.2-3540 m for variety of potential applications [J]. Appl. Phys. Lett., 2004,84:1635-1637.[9] HSU Y K,CHANG C S, HSIEH W F. Photoluminescence study of GaSe doped with Er [J]. Jpn. J. Appl. Phys., 2003, 42:4222-4225.[10] DAS S, GHOSH C, VOEVODINA O G, et al.. Modified GaSe crystal as a parametric frequency converter [J]. Appl. Phys. B, 2005,82:43-46.[11] SUHRE D R, SINGH N B, BALAKRISHNA V, et al.. Hopkins improved crystal quality and harmonic generation in GaSe doped with indium [J]. Opt. Lett., 1997,22:775-777.[12] TIKHOMIROV A A, ANDREEV Y M, LANSKII G V, et al.. Doped GaSe nonlinear crystal [J]. SPIE, 2006, 6258:625809-1-625809-9.[13] HSU Y K, CHEN C W,HUANG J Y, et al.. Erbium doped GaSe crystal for mid-IR applications [J]. Opt. Express, 2006,14:5484-5491.[14] ZHANG H Z, KANG Z H, JIANG Y, et al.. SHG phase matching in GaSe and mixed GaSe1-xS<em>x, x0.412, crystals at room temperature [J]. Opt. Express, 2008,16:9951-9957.[15] ANDREEV Y M, ATUCHIN V V, LANSKII G V, et al.. Growth, real structure and applications of GaSe1-xS<em>x crystals [J]. Mater. Sci. and Eng.B, 2006, 128:205-210.[16] WU Q, ZHANG X C. Free-space electro-optic sampling of terahertz beams [J]. Appl. Phys. Lett., 1995, 67:3523-3525.[17] YU B L,ZENG Z,XING Q,et al.. Probing dielectric relaxation properties of liquid CS2 with terahertz time-domain spectroscopy [J]. Appl. Phys. Lett., 2003, 82:4633-4635.[18] HO C H,WU C C, CHENG Z H. Crystal structure and electronic structure of GaSe1-xS<em>x series layered crystal [J]. J. Cryst. Growth, 2005, 279:321-328.[19] HO C H, HUANG K W. Visible luminescence and structural property of GaSe1-xS<em>x(0x1) series layered crystals [J]. Solid State Comm., 2005,136:591-594.[20] MANFREDOTTI C, MANCINI A M, RIZZO A, et al.. Electrical properties of GaS<em>xSe1-x solid solutions [J]. Phys. Stat. Sol. A,1978,48:293-296.[21] YOSHIDA H, NAKASHIMA S,MITSUISHI A. Phonon Raman spectra of layer compound GaSe [J]. Phys. Stat. Sol. B,1973,59:655-666.[22] CHEN C W, TANG T T, LIN S L, et al.. Optical properties and potential applications of -GaSe at terahertz frequencies [J]. J. Opt. Soc. Am.B,2009,26:58-65.
0
浏览量
382
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构