浏览全部资源
扫码关注微信
西北核技术研究所 西安,710024
收稿日期:2010-10-08,
修回日期:2010-10-30,
网络出版日期:2011-02-22,
纸质出版日期:2011-02-22
移动端阅览
张永生, 郑国鑫. 500fs紫外激光系统及其在闪烁体荧光特性测试中的应用[J]. 光学精密工程, 2011,19(2): 475-481
ZHANG Yong-sheng, ZHENG Guo-xin. 500 fs UV laser system and its application to fluorescence test of thin film scintillators[J]. Editorial Office of Optics and Precision Engineering, 2011,19(2): 475-481
张永生, 郑国鑫. 500fs紫外激光系统及其在闪烁体荧光特性测试中的应用[J]. 光学精密工程, 2011,19(2): 475-481 DOI: 10.3788/OPE.20111902.0475.
ZHANG Yong-sheng, ZHENG Guo-xin. 500 fs UV laser system and its application to fluorescence test of thin film scintillators[J]. Editorial Office of Optics and Precision Engineering, 2011,19(2): 475-481 DOI: 10.3788/OPE.20111902.0475.
介绍了用于高速时间记录设备以及多种闪烁体材料时间响应特性测试的500 fs
248 nm超短脉冲紫外激光系统的构成及其主要技术参数。系统的核心部分是一个分布反馈染料激光器
即一个稀疏刻线光栅的动态像。像的长度和染料溶液的折射率决定了脉冲的最短宽度
并且通过改变动态光栅的间距就可以改变输出光谱。在实验条件下
分布反馈染料激光器输出波长为496 nm
倍频后为248 nm
与KrF准分子激光放大器工作波长匹配。放大器介质的低饱和能量密度和三程离轴放大技术使得输出激光的强度分布非常均匀
这对于标定快速记录器件极其有利。利用该系统对ZnO∶Ga薄膜闪烁体在超短紫外激光激发下的荧光特性进行了测试
建立了荧光传输光路
解决了散射激光干扰和荧光高效率收集等问题。测量得到其荧光光谱为380~410 nm
中心波长为392 nm
荧光响应时间约为80 ps。最后
讨论了在现有实验条件下影响测量结果的一些因素。
A 500 fs
248 nm ultra-short UV laser system for high speed recording devices and scintillators fluorescent excitation was introduced in the paper. The central part of the laser system is a Distributed Feedback Dye Laser(DFDL)
namely
a dynamic image of coarse grating. The image length and the index of dye solution give the shortest pulse duration and changing the pitch of the grating results in a tunable spectrum. In experiments the working wavelength of the DFDL was adjusted to 496 nm and frequency doubled to 248 nm
which was match to that of the KrF excimer amplifier. The off-axis three pass amplification schemes and low saturation energy density of the excimer laser media made the intensity profile of the laser beam faily uniform
which was very attractive for the calibration of a high-speed recording device.An experiment to measure the fluorescent characteristics of a thin film ZnO∶Ga scintillator under UV laser excitation was demonstrated with the laser system. The interference of the scattered laser and the weak fluorescent signal was solved by using a collective imaging lens and a monochrometer.Obtained results show that the fluoresce spectrum is in the 380 nm to 410 nm with the central peak at 392 nm
and the fluorescene time of the scintillator is about 80 ps. Finally
the factors which may affect the measuring results were also discussed.
LEBEDEV A. A laser calibration system for the STAR TPC[J]. Nuclear Instruments and Methods in Physics Research A,2002,478:163-165.[2] GABRIEL V S. The HARP TPC laser calibration system[J]. Nuclear Instruments and Methods in Physics Research A,2004,518:132-134.[3] HANNA D, MUKHERJEE R. The laser calibration system for the STACEE ground-based gamma ray detector[J]. Nuclear Instruments and Methods in Physics Research,2002,A482:271-280.[4] 赵卫,刘晋升,杨斌洲,等. X射线条纹相机紫外光时标研究[J]. 强激光与粒子束,1998,10(1):127-130. ZHAO W,LIU J SH,YANG B ZH,et al..Calibration Reaserch of X-ray streak camera with UV laser[J].High Power Laser and Particle Beams,1998,10(1):127-130.(in Chinese)[5] 刘天夫,张步新. 皮秒条纹相机的标定[J]. 物理,1999,28(4):241-243. LIU T F,ZHANG B X. Calibration of picosecond streak camera[J].Physics,1999,28(4):241-243.(in Chinese)[6] 易荣清,郑志坚,胡昕,等. 条纹相机静态能量响应的绝对标定[J]. 高能物理与核物理,2003,27(5):452-454. YI R Q,ZHENG ZH J,HU Y.Absolute calibtation of streak cameras static energy response[J]. High Energy Physics and Nuclear Physics, 2003,27(5):452-454.(in Chinese)[7] 刘永刚,彭晓世,汤小青. 光学条纹相机扫描速度和非线性测试[J]. 核电子学与探测技术,2004,24(2):218-220. LIU Y G, PENG X SH, TANG X Q. Test of scanning speed and noliner character of optical streak camera[J]. Nuclear electronics and detection techniques, 2004,24(2):218-220.(in Chinese)[8] SZATMARI S,SCHAFER F P.Subpicosecond, widely tunable distributed feedback dye laser[J].Applied Physics B,1988,46:305-311.[9] 张永生,颜立新,等. 分布反馈染料激光器实验研究[J]. 红外与激光工程,2005,34(2):155-157. ZHANG Y S, YAN L X, Experimental study of distributed feedback dye lasers[J]. Infrared and laser engineering, 2005,34(2):155-157.(in Chinese)[10] Femtosecond Laser System Instruction Manual, March 1995.[11] 王晓耘. 超高速光电管中银氧铯光电阴极的研究[J]. 光电子技术,2004,24, 2:81-83. WANG X Y. Study of Ag-O-Se photoelectronic cathode of ultrafast phototube[J]. Photoelectronic Techniques, 2004,24(2):81-83.(in Chinese)[12] SROKA J. Osciliscope influence on the calibration uncertaintity of the pulse rise time of ESD simulators[J]. IEEE, 2003:378-381.[13] DERENZO S E,WEBER M J,MOSES W W, et al.. Measurements of the intrinsic rise times of common inorganic scintillators1[J]. IEEE Transactions on Nuclear Science[J].2000, 47(3):860-864.[14] HARA T, TANAKA Y, KITAMURA H, et al.. Observation of hard X-ray pluses with a highly sensitive streak camera [J]. Nuclear Instruments and Methods in Physics Research A, 2001,457(9):1125-1128.[15] 徐大纶.变像管高速摄影[M]. 北京:科学出版社,1990. XU D L. High Speed Photography with Photoconverter[M]. Beijing:Science Press, 1990.(in Chinese)[16] 吕敏. 脉冲射线束测量中的统计起伏问题[J]. 物理学报,1983,32(2):216-224. LV M. Statistic flucturation of pulsed radiation measurement[J]. Physics Letter, 1983,32,2:216-224.(in Chinese)[17] 李禄华. 快速强流光电管的时间特性研究[J]. 原子能科学技术,1975,2(2):354-360. LI L H. Time characters study of ultrafast high current phototube[J]. Science and Technology of Atomic Energy, 1975,2(2):354-360.(in Chinese)[18] BLANKESPOOR S C,DERENZO S E,MOSES W W. Characterization of a pulsed X-ray source for fluorescrent lifetime measurements[J]. IEEE Transactions on Nuclear Science,1994,41(4):698-702.
0
浏览量
124
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构