浏览全部资源
扫码关注微信
1. 中国科学院 研究生院 北京,100039
2. 中国科学院 光电技术研究所 自适应光学研究室,四川 成都,610209
3. 中国科学院 自适应光学重点实验室,四川 成都,610209
收稿日期:2010-06-30,
修回日期:2010-08-06,
网络出版日期:2011-03-22,
纸质出版日期:2011-03-22
移动端阅览
樊志华, 王春鸿, 姜文汉. 基于累加器的哈特曼-夏克波前斜率处理器[J]. 光学精密工程, 2011,19(3): 501-507
FAN Zhi-hua, WANG Chun-hong, JIANG Wen-han. Accumulator-based wavefront slope processor for Shack-Hartmann sensors[J]. Editorial Office of Optics and Precision Engineering, 2011,19(3): 501-507
樊志华, 王春鸿, 姜文汉. 基于累加器的哈特曼-夏克波前斜率处理器[J]. 光学精密工程, 2011,19(3): 501-507 DOI: 10.3788/OPE.20111903.0501.
FAN Zhi-hua, WANG Chun-hong, JIANG Wen-han. Accumulator-based wavefront slope processor for Shack-Hartmann sensors[J]. Editorial Office of Optics and Precision Engineering, 2011,19(3): 501-507 DOI: 10.3788/OPE.20111903.0501.
在硬件资源有限的情况下
为了支持尽可能多的子孔径进行实时波前斜率处理
提出了一种基于累加器的波前斜率处理器。该处理器的运算核心是子光斑质心计算模块
根据二维图像矩计算的可分解性以及一维矩的递推累加求解方法
用加法运算代替子孔径坐标与像素灰度的乘法运算
获得灰度重心法所需的所有二维低阶矩。该模块仅由5个累加器组成
硬件实现时避免了乘法器的使用
降低了资源消耗。仿真实验结果表明:对于2222方形排布的哈特曼-夏克波前传感器图像
本文的结构可在FPGA内实现;在100 MHz的工作频率下
完成一帧所有子孔径斜率计算的延迟时间为0.33 s
计算误差<0.002 pixel;与传统的波前斜率处理器相比
其逻辑资源消耗减小了40%左右。所提出的结构能够在不增加额外资源的情况下
通过对原波前斜率处理器进行升级来完成
其支持的子孔径数目增加1倍左右
实现了波前斜率的高速、高精度提取。
In order to accommodate as many subapertures as possible in the high-speed wavefront slope calculation when hardware resources were limited
an accumulator-based wavefront slope processor was proposed. The computational core of the processor is an array of subaperture spot centroid calculating element.According to the decomposition of 2D moment calculation and the recursive procedure of 1D moment calculation
it can substitute the multiplications between the pixel grayvalues and its coordinates with several sum operations to obtain the low order 2D geometric moments required in centroiding. The calculating element simply consists of five accumulators
and the cost has been decreased because no multipliers are needed. Experimental results indicate that when it is implemented in a Field Programmable Gate Array(FPGA) at a clock frequency of 100 MHz
the proposed architecture can obtain gradients of all subapertures in 2222 Shack-Hartmann with the latency no more than 0.33 s and the error less than 0.002 pixel. The new design has reduced the hardware resource by 40% as compared to that of the multiplier-based architecture. Furthermore
the original multiplier-based processor can be updated for Shack-Hartmann sensors and can obtain the subapertures twice as much as that of original one without additional hardware resources. It realizes the high speed measurement of wavefront with a high accuracy.
程少园,曹召良,胡立发,等. 离轴反射式人眼视网膜成像自适应光学系统设计[J]. 光学 精密工程, 2010, 18(3):609-614. CHEN SH Y, CAO ZH L, HU L F, et al.. Design of reflective off-axis adaptive optical system for human retinal imaging[J]. Opt. Precision Eng., 2010,18(3):609-614.(in Chinese)[2] 李华强,宋贺伦,饶长辉,等. 增大夏克-哈特曼波前传感器动态测量范围的方法[J]. 光学 精密工程, 2008,16(7):1203-1207. LI H Q,SONG H L,RAO CH H, et al.. Extrapolation method to extend dynamic range of Shack-Hartmann wave-front sensor[J]. Opt. Precision Eng., 2008,16(7):1203-1207.(in Chinese)[3] 王海涌,黄江艳. CCD视频幅值调节器的设计及目标精确定位算法[J]. 光学 精密工程, 2008, 16(6):1105-1109. WANG H Y, HUANG J Y. Design of CCD video amplitude controller and target precise locating algorithm[J]. Opt. Precision Eng., 2008,16(6):1105-1109.(in Chinese)[4] HARDY J W. Adaptive Optics for Astronomical Telescopes [M]. New York: Oxford University Press, 1998.[5] 周璐春,王春鸿. 基于FPGA 技术的波前斜率处理方法[J]. 光电工程, 2002,29(3):28-31. ZHOU L CH, WANG CH H. A wavefront slope processing method based on FPGA technique [J]. Opto-Electronic Engineering, 2002, 29(3):28-31. (in Chinese)[6] 唐端午.基于脉动阵列的实时波前处理机原理验证 . 北京:中国科学院研究生院,2008. TANG D W. Principle validation of the wave-front processor based on systolic array . Beijing: Graduate University of the Chinese Academy of Sciences,2008.(in Chinese)[7] RODRGUEZ RAMOS L F. FPGAbased slope computation for ELTs adaptive optics wavefront sensors[J]. SPIE, 2008,7015(701530):1-11.[8] LUREN Y,FRITZ A. Fast computation of Cartesian geometric moments using discrete Greens theorem[J].Pattern Recognition, 1996,29(7):1061-1073.[9] BALKASIM S,MOHAMED K.Fast computation of 2-D image moments using biaxial transform [J]. Pattern Recognition, 2001,34(9):1867-188.[10] 王冰, 职秦川. 灰度图像质心快速算法[J]. 计算机辅助设计与图形学学报, 2004,16(10):1360-1365. WANG B, ZHI Q C. Computation of center of mass for gray level image based on differential moments factor[J]. Journal of Computer-Aided Design & Computer Graphics, 2004,16(10):1360-1365. (in Chinese)[11] HATAMIAN B. Moment calculations by digital filters [J]. AT & T Bell Laboratories Technical Journal, 1984,63:217-229.[12] HATAMIAN M. A real time two-dimensional moment generating algorithm and its single chip implemenentation [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1986,34:546-553.[13] 彭晓峰, 李梅, 饶长辉. 基于绝对差分算法的相关HS波前处理机设计[J]. 光电工程, 2008,35(12):18-22. PENG X F,LI M,RAO C H. Design of correlating hartmann-shack wavefront processor based on absolute difference algorithm[J]. Opto-Electronic Engineering, 2008,35(12):18-22.
0
浏览量
299
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构