浏览全部资源
扫码关注微信
1. 清华大学 微电子学研究所,北京 100084
2. 大连理工大学 辽宁省微纳米技术及系统重点实验室,辽宁 大连 116024
收稿日期:2010-04-06,
修回日期:2010-06-02,
网络出版日期:2011-03-22,
纸质出版日期:2011-03-22
移动端阅览
刘泽文, 田昊, 刘冲. 微加热器热传导试验与计算[J]. 光学精密工程, 2011,19(3): 612-619
LIU Ze-wen, TIAN Hao, LIU Chong. Experiment and thermal calculation of micro heater[J]. Editorial Office of Optics and Precision Engineering, 2011,19(3): 612-619
刘泽文, 田昊, 刘冲. 微加热器热传导试验与计算[J]. 光学精密工程, 2011,19(3): 612-619 DOI: 10.3788/OPE.20111903.0612.
LIU Ze-wen, TIAN Hao, LIU Chong. Experiment and thermal calculation of micro heater[J]. Editorial Office of Optics and Precision Engineering, 2011,19(3): 612-619 DOI: 10.3788/OPE.20111903.0612.
为了研究微加热膜下方的结构与微加热器性能的关系
利用数值计算与有限元仿真
研究了微加热膜下方空气隙厚度的变化对加热器性能的影响。首先
通过微加热器试验确定了对流换热系数等关键热学计算参数
建立了一维Fourier导热微分方程组
计算了Biot数并以此为依据对模型进行了薄壁简化
使用有限差分法对微分方程进行了数值计算。然后
使用ANSYS有限元分析软件对模型进行了电热耦合仿真
并对在对流换热边界下硅衬底(无空气隙)
100
200
300
400 m气隙以及加热膜(完全贯通)6种模型的瞬态温度响应及稳态热分布的结果进行了对比。计算结果表明
相比硅衬底
目前的微加热膜结构在同样边界条件下可以将最高温度提高约17%。空气隙为200 m时
在+5 V驱动电压和空气对流边界条件下
微加热器可以达到390 K
稳态功耗为134 mW
起到了改善最高温度性能
降低功耗的作用。
By utilizing the numerical solution and Finite Element Analysis (FEA) approach
the effect of the air gap beneath a heating membrane on the performemce of a micro heater was calculated and simulated. The thermal convection coefficient was acquired from a heating experiment. Then
a 1D Fourier heat transfer equation was derived.By using the Biot number calculated and the lumped-capacity solution
the model was simplified into a multi-layer thin slab one.Furthermore
the transient temperature response and stable thermal distribution of the air gap in thickness of 0 (pure Si substrate)
100
200
300
400 m and completely through (heating membrane) were compared under the conditions of heat convection and heat transfer. Calculation results show the climax temperature has increased approximately 17% by utilizing the heating membrane structure. The results of steady state and transient thermal-electrical coupled field FEA reveal that 200 m air gap structure indeed enhances the climax temperature to 390 K and reduces the power consumption to 134 mW
which is coherent with the numerical calculation results and experiences.
CREEMER J F,BRIAND D,ZANDBERGEN H W,et al..Microhotplates with TiN heaters[J].Sensors and Actuators A: Physical, 2008, 148(2):416-421.[2] TSAI JR H, LIN L.Transient thermal bubble formation on polysilicon micro-resisters[J]. Journal of Heat Transfer, 2002,124(22):375-382.[3] ZHANG K L,CHOU S K,ANG S S. Fabrication, modeling and testing of a thin Au/Ti microheater[J]. International Journal of Thermal Sciences, 2007,46(6):580-588.[4] 王少飞,曹宇,王小宝,等. 激光微细熔覆快速制造微加热器阵列[J]. 中国激光,2007,34(11):1567-1571. WANG S F,CAO Y,WANG X B,et al..Microheater array fabrication by laser micro-cladding method[J].Chinese Journal of Lasers, 2007,34(11):1567-1571.(in Chinese)[5] 闫卫平, 朱剑波, 马灵芝,等. 金属薄膜加热器的研究[J]. 传感技术学报,2004,4(17):615-619. YAN W P,ZHU J B,MA L ZH,et al..Research of metal membrane heater[J].Chinese Journal of Sensors and Actuators,2004,4(17):615-619.[6] 黎仁刚,黄庆安,李伟华. 热电耦合微执行器温度分布的节点分析法[J]. 半导体学报,2005,3(26):562-567. LI R G,HUANG Q A,LI W H. A nodal analysis method for temperature distribution of thermo-electrical coupled thermal microactuators[J].Chinese Journal of Semiconductors, 2005,3(26):562-567. (in Chinese)[7] 罗伟栋. PCR扩增芯片中微加热器结构优化分析[J]. 传感技术学报,2005,3(18):627-631. LUO W D. Analysis and optimization to the structure of micro-heater in PCR Chip[J].Chinese Journal of Sensors and Actuators, 2005,3(18):627-631. (in Chinese)[8] 吴雷, 李铁, 王立春, 等. 微机械面型微加热器的热学分析[J]. 功能材料与器件学报,2005,4(11):466-475. WU L, LI T, WANG L CH,et al..Thermal analysis of MEMS micro-hotplate with uniform temperature in large area[J].Journal of Functional Materials and Device,2005,4(11):466-475. (in Chinese)[9] JOHN H. LIENHARD IV. A Heat Transfer Textbook[M].Houston:Phlogiston Press,2008.[10] 贺永,傅建中,陈子辰. 热压成型装备精密温控研究[J]. 光学 精密工程,2008,5(16): 845-851. HE Y,FU J ZH,CHEN Z CH. Temperature precise control in hot embossing device[J].Opt. Precision Eng., 2008,5(16):845-851.(in Chinese)[11] 罗志涛,徐抒岩,陈立恒. 大功率焦平面器件的热控制[J]. 光学 精密工程,2008,11(16):2187-2195. LUO ZH T,XU SH Y,CHEN L H. Thermal control of high-power focal plane apparatus[J].Opt. Precision Eng., 2008,11(16):2187-2195.(in Chinese)[12] 刘静. 微米/纳米尺度传热学[M]. 北京:科学出版社,2001. LIU J. Micro/nano Scale Heat Transfer[M]. Beijing: China Science Press, 2001. (in Chinese)[13] 俞昌铭. 热传导及其数值分析[M]. 北京:清华大学出版社,1981. YU CH M. An Numerical Analysis of Heat Conduction[M]. Beijing: Tsinghua University Press,1981. (in Chinese)
0
浏览量
861
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构