浏览全部资源
扫码关注微信
中国工程物理研究院 电子工程研究所,四川 绵阳 621900
收稿日期:2010-05-24,
修回日期:2010-09-15,
网络出版日期:2011-03-22,
纸质出版日期:2011-03-22
移动端阅览
王超, 陈光焱, 吴嘉丽. 用于低<em>g</em><sub>n</sub>值微惯性开关的低刚度平面微弹簧设计与制作[J]. 光学精密工程, 2011,19(3): 620-627
WANG Chao, CHEN Guang-yan, Wu Jia-li. Development of planar micro-spring with low stiffness in low-<em>g</em><sub>n</sub> micro inertial switch[J]. Editorial Office of Optics and Precision Engineering, 2011,19(3): 620-627
王超, 陈光焱, 吴嘉丽. 用于低<em>g</em><sub>n</sub>值微惯性开关的低刚度平面微弹簧设计与制作[J]. 光学精密工程, 2011,19(3): 620-627 DOI: 10.3788/OPE.20111903.0620.
WANG Chao, CHEN Guang-yan, Wu Jia-li. Development of planar micro-spring with low stiffness in low-<em>g</em><sub>n</sub> micro inertial switch[J]. Editorial Office of Optics and Precision Engineering, 2011,19(3): 620-627 DOI: 10.3788/OPE.20111903.0620.
针对低
g
n
值微惯性开关对微弹簧系统刚度的要求(0.1~1 N/m数量级)
设计了一种基于平面矩形螺旋梁结构的平面微弹簧。假设材料均匀、连续且具各向同性
根据材料力学的卡氏定理和线弹性理论
推导得到了微弹簧的弹性系数计算公式
并根据ANSYS有限元仿真分析结果对其进行了修正。基于多层高深宽比硅台阶刻蚀方法
采用MEMS体硅加工工艺
完成了微弹簧的制备
划片后微弹簧芯片尺寸为7 mm7 mm0.3 mm。分析结果表明
完善后的弹性系数计算公式与ANSYS仿真结果更为接近
可直接应用于微弹簧的结构优化设计以简化设计过程。纳米压痕法的测试结果表明
微弹簧样品的弹性系数约为0.554 N/m
满足设计要求。该微弹簧具有体积小、结构简单、加工容易实现等特点
其成功研制为实现低
g
n
值微惯性开关的工程实用化奠定了基础。
A planar micro-spring based on a planar rectangular helical spring was designed for a low-
g
n
micro inertial switch with the micro-spring in stiffness up to 0.1-1 N/m magnitude. The elastic coefficient formula of the micro-spring was derived with the Castiglianos theory and the linear elasticity theory based on the assumption that the material property was uniform
homogeneous and isotropic
and then it was modified by the ANSYS finite element method. The micro-spring was fabricated by using the MEMS bulk micromachining process based on the multi-step ICP etching method
and the bulk of chip was about 7 mm7 mm0.3 mm in size. The theoretic analysis shows that the results agree well with the ANSYS simulation results
which demonstrates that the optimized formula can be directly applied to the optimization design of the micro-spring to simplify the design process. The nanoindentation test results show that the elastic coefficient of the fabricated micro-spring is about 0.554 N/m. The planar micro-spring has the advantages of small size
simple structure and easy fab- rication
and it can lay the foundation for the engineering applications of low-
g
n
micro inertial switchs.
陈光焱,王超. 微惯性开关设计技术综述[J]. 信息与电子工程,2009,7(5):439-442. CHEN G Y, WANG C. Review of the design of micro inertial switch[J]. Information and Electronic Engineering, 2009,7(5):439-442. (in Chinese)[2] 贾孟军,李昕欣,宋朝晖,等. 开关点电可调节的MEMS冲击加速度锁定开关[J]. 半导体学报,2007,28(8):1295-1300. JIA M J, LI X X, SONG Z H, et al.. MEMS shocking-acceleration switch with threshold modulating and on-state latching function [J]. Chinese Journal of Semiconductors, 2007, 28(8):1295-1300. (in Chinese)[3] 李华,石庚辰. MEMS微弹簧应用模式分析[J]. 传感技术学报,2007,20(12):2709-2712. LI H, SHI G C. Analysis of application pattern of MEMS microspring[J]. Chinese Journal of Sensors and Actuators, 2007,20(12):2709-2712. (in Chinese)[4] 李文军,赵小林,蔡炳初,等. 一种新型微机械硅弹簧的设计与制作[J]. 微细加工技术,2001,4: 70-75. LI W J, ZHAO X L,CAI B C, et al.. Design and Fabrication of a Novel MEMS Silicon Spring[J]. Microfabrication Technology, 2001, 4:70-75. (in Chinese)[5] 杨卓青,丁桂甫,蔡豪刚,等. 用于MEMS惯性开关的微弹簧有限元动力学分析[J]. 机械强度,2008,30(4): 586-589. YANG Z Q, DING G F, CAI H G, et al.. Finite element dynamics analysis of micorspring in mems inertia switch[J]. Journal of Mechanical Strength, 2008,30(4): 586-589. (in Chinese)[6] 吴志亮,常娟,冯鹏洲,等. 引信用MEMS平面微弹簧弹性系数分析[J]. 南京理工大学学报(自然科学版),2008,32(2):140-143. WU Z L, CHANG J, FENG P Z, et al.. Elastic coefficient analysis of MEMS planar microspring used in fuse[J]. Journal of Nanjing University of Science and Technology (Natural Science), 2008,32(2):140-143. (in Chinese)[7] CHEN G Y, WU J L, ZHAO L, et al.. Low-g micro inertial switch based on Archimedes spiral[J]. Opt. Precision Eng. , 2009,17(6):1257-1261.[8] 单辉祖.材料力学[M]. 北京:高等教育出版社. DAN Z H. Material Mechanics[M]. Beijing: Higher Education Press. (in Chiness)[9] 王阳元,武国英,郝一龙,等. 硅基MEMS加工技术及其标准工艺研究[J]. 电子学报,2002,30(11):1577-1584. WANG Y Y, WU G Y, HAO Y L, et al.. Study of silicon-based MEMS technology and its standard process[J]. Acta Electronica Sinica, 2002,30 (11):1577-1584. (in Chinese)[10] 闫永达,费维栋,胡振江,等. 基于单片机的AFM纳米机械性能测试系统[J]. 光学 精密工程,2008,16(7):1223-1229. YAN Y D, FEI W D, HU Z J, et al.. SCM-based nanomechanical property measurement system of AFM[J]. Opt. Precision Eng., 2008,16 (7):1223-1229. (in Chinese)[11] 陈治,胡晓东,傅星,等. 基于块匹配的MEMS平面纳米精度运动测量[J]. 光学 精密工程,2008,16(3):137-142. CHEN Z, HU X D, FU X, et al.. Nanoscale measurement of MEMS in-plane motion based on block matching[J]. Opt. Precision Eng., 2008,16(3):137-142. (in Chinese)[12] HOLBERY J D, EDEN V L. A comparison of scanning microscopy cantilever force constants determined using a nanoindentation testing apparatus[J]. Journal of Micromechanics and Microenginering, 2000,10:85-92.[13] SENTURIA S D. Microsystem Design [M]. Berlin:Kluwer Academic Publishers. 2003.
0
浏览量
618
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构