浏览全部资源
扫码关注微信
东南大学 微惯性仪表与先进导航技术教育部重点实验室,江苏 南京 210096
收稿日期:2010-03-12,
修回日期:2010-05-07,
网络出版日期:2011-03-22,
纸质出版日期:2011-03-22
移动端阅览
夏国明, 杨波, 王寿荣. 硅微机械陀螺自激驱动数字化技术[J]. 光学精密工程, 2011,19(3): 635-640
XIA Guo-ming, YANG Bo, WANG Shou-rong. Digital self-oscillation driving technology for silicon micro machined gyroscopes[J]. Editorial Office of Optics and Precision Engineering, 2011,19(3): 635-640
夏国明, 杨波, 王寿荣. 硅微机械陀螺自激驱动数字化技术[J]. 光学精密工程, 2011,19(3): 635-640 DOI: 10.3788/OPE.20111903.0635.
XIA Guo-ming, YANG Bo, WANG Shou-rong. Digital self-oscillation driving technology for silicon micro machined gyroscopes[J]. Editorial Office of Optics and Precision Engineering, 2011,19(3): 635-640 DOI: 10.3788/OPE.20111903.0635.
为了进一步增强硅微机械陀螺仪驱动模态的控制精度与稳定性
提出了一种基于自激振荡原理
以现场可编程门阵列(FPGA)为主要数字信号处理平台的驱动电路。以陀螺仪驱动模态特性为出发点
分析了自激振荡原理对驱动电路的要求。分析并建立了驱动相位控制与驱动幅度控制模型
实现了频率测量-补偿算法控制驱动环路相位
PID控制算法控制环路幅度。实验结果表明
常温下驱动幅度控制精度达到1.510
-5
并且能跟踪驱动模态谐振频率。由于采用了数字电路使得驱动幅度温度系数由原来模拟电路方案的7.6910
-5
/℃降低到1.18310
-5
/℃。相比传统模拟电路控制方案
本方案具有驱动精度高
温度适应性好的优点。
To further improve the performance and stability of the primary mode for a Silicon Micro Machined gyroscope
a new driving circuit based on the self-oscillation principle and controlled by Field Programming Gate Array(FPGA) digital signal processing was proposed. Based on the characters of the digital signal processing and the principle of self-oscillation
the models for the loop phase control and oscillation amplitude control were designed and analyzed
then the control methods in which the loop phase was controlled by 'frequency measure and adjust program and the signal amplitude was controlled by 'PID control program were presented. Experimental results indicate that the precision of the oscillation amplitude is up to 1.510
-5
and the driving frequency can follow the change of the primary mode resonant frequency. In addition
by introducing the digital signal control system
the thermal sensitivity of oscillation amplitude has improved from 7.6910
-5
/℃ to 1.18310
-5
/℃. Compared with an analog circuit
this system has more precision amplitude and better temperature adaptation.
刘危,解旭辉,李圣怡. 微机械惯性传感器的技术现状及展望[J]. 光学 精密工程, 2003,11(5):425-431. LIU W,XIE X H,LI SH Y. Present state and perspectives of micromachined inertial sensors [J].Opt.Precision Eng.,2003,11(5):425-431.(in Chinese)[2] 杨波. 硅微陀螺仪测控技术研究 . 南京:东南大学,2007. YANG B. Research on silicon micro-gyroscope measurement and control technology . Nanjing:Southeast University,2007.(in Chinese)[3] 王展飞,鲁文高,李峰,等. MEMS 振动陀螺闭环自激驱动的理论分析及数值仿真[J]. 传感技术学报,2008,21(8):1337-1342. WANG ZH F, LU W G, LI F, et al.. Theoretical analysis and numerical simulation of closed-loop self-oscillation system for MEMS vibratory gyroscopes[J].Chinese Journal of Sensors and Actuators,2008,21(8):1338-1342.(in Chinese)[4] KEYMEULEN D, PEAY C, FOOR D,et al.. Control of MEMS disc resonance gyroscope using a FPGA platform . 2008 IEEE Aerospace Conference,2008:1-8.[5] RAMAN J, CRETU E, ROMBOUTS P, et al.. A closed-loop digitally controlled MEMS gyroscope with unconstrained sigma-delta force-feedback[J]. IEEE Sensors Journal,2009,9(3):297-305.[6] MIKKO S. System and circuit design for a capacitive MEMS gyroscope .Helsinki University of Technology, Faculty of Electronics, Communications and Automation, Department of Micro and Nanosciences,2008.[7] 周文闻,张嵘,周斌,等. 基于SOPC的单轴陀螺驱动环路设计[J]. 中国惯性技术学报,2009,17(1):67-70. ZHOU W W, ZHANG R, ZHOU B.Drive loop design of single axis gyroscope based on SOPC[J].Joural of Chinese Inertial Technology,2009,17(1):67-70.(in Chinese)[8] 张琪伟.双线振动硅微陀螺仪数字化测控技术研究 . 南京:东南大学,2009. ZHANG Q W. Research on detecting and control technology of linear vibratory silicon micro-mechanical gyroscope Nanjing:Southeast University,2009.(in Chinese)[9] 稻叶保.振荡电路的设计与应用[M]. 北京:科学出版社,2007. INABA TAMOSTU.Oscillation Circuit Design and Application[M]. Beijing:Science Press,2007.(in Chinese)[10] MCLOSKEY. Integrated low power digital gyro control electronics:United States,US6915215B2 .2005-07-05.
0
浏览量
497
下载量
10
CSCD
关联资源
相关文章
相关作者
相关机构