浏览全部资源
扫码关注微信
重庆大学 光电技术及系统教育部重点实验室,重庆 400044
收稿日期:2010-06-26,
修回日期:2010-07-07,
网络出版日期:2011-03-22,
纸质出版日期:2011-03-22
移动端阅览
辜小花, 龚卫国, 杨利平. 有监督图优化保局投影[J]. 光学精密工程, 2011,19(3): 672-680
GU Xiao-hua, GONG Wei-guo, YANG Li-ping. Supervised graph-optimized locality preserving projections[J]. Editorial Office of Optics and Precision Engineering, 2011,19(3): 672-680
辜小花, 龚卫国, 杨利平. 有监督图优化保局投影[J]. 光学精密工程, 2011,19(3): 672-680 DOI: 10.3788/OPE.20111903.0672.
GU Xiao-hua, GONG Wei-guo, YANG Li-ping. Supervised graph-optimized locality preserving projections[J]. Editorial Office of Optics and Precision Engineering, 2011,19(3): 672-680 DOI: 10.3788/OPE.20111903.0672.
研究了保局投影中近邻图的构造及更新问题
提出了一种有监督图优化保局投影(SGoLPP)特征提取方法
并应用于人脸识别。不同于传统的保局投影(LPP)算法预先设定权值矩阵并通过一次优化求解投影矩阵
SGoLPP将权值矩阵作为学习项引入到目标函数
通过交替迭代更新逐步获得最优权值矩阵和最优投影矩阵。同时
通过引入类别信息
始终对同类样本点对的权值进行更新
有效地抑制了异类样本的干扰。在UCI模拟数据集上
SGoLPP在较少的迭代次数下获得了更好的聚类和分类效果。在Yale
UMIST和CMU PIE人脸库上
SGoLPP的平均识别率比LPP、有监督保局投影(SLPP)和图优化保局投影(GoLPP)分别高出26.6%、4.8%和8.8%。实验显示本文提出的SGoLPP算法在样本可分性与鲁棒性方面具有优势
可有效地提取人脸特征。
This paper focuses on the construction and optimization of neighbour graph and proposes a Supervised Graph-optimized Locality Preserving Projections (SGoLPP) method for facial feature extraction. Different from the Locality Preserving Projections(LPP) that it predefines the weight matrix and solves the projection matrix by one step optimization
the SGoLPP incorporates the weight matrix into the objective function as a learning term
and optimizes the weight matrix and projection matrix simultaneously. Meanwhile
the label information is utilized to update the weights corresponding to sample pairs in the same class and to avoid the interferences from samples not in the same class. Experiments on the Wine database of UCI show that the SGoLPP achieves better cluster performance with less iterations. For face recognition
the average recognition accuracies of SGoLPP on Yale
UMIST and CMU PIE face databases are 26.6%
4.8% and 8.8% higher than those of LPP
Supervised Locality Preserving Projections(SLPP) and Graph-optimized Locality Preserving Projections(GoLPP)
respectively
which verifies the effectiveness and superiority of the proposed method.
杨利平,龚卫国,辜小花,等. 完备鉴别保局投影人脸识别算法[J]. 软件学报,2010,21(6):1277-1286. YANG L P, GONG W G, GU X H, et al.. Complete discriminant locality preserving projections for face recognition[J]. Journal of Software, 2010,21(6):1277-1286. (in Chinese)[2] 杨利平,龚卫国,李伟红,等. 随机采样子空间保局投影人脸识别算法[J]. 光学 精密工程,2008,16(8):129-124. YANG L P, GONG W G, LI W H, et al.. Random sampling subspace locality preserving projection for face recognition[J]. Opt. Precision Eng., 2008,16(8):129-124. (in Chinese)[3] YANG L P, GONG W G, GU X H, et al.. Bagging null space locality preserving discriminant classifiers for face recognition[J]. Pattern Recognition, 2009, 42(9):1853-1858.[4] 董超,赵慧洁,王维,等. 采用局部正交子空间投影的高光谱图像异常检测[J]. 光学 精密工程,2009,17(8):228-234. DONG C, ZHAO H, WANG W, et al.. Hyperspectral image anomaly detection based on local orthogonal subspace projection[J]. Opt. Precision Eng., 2009,17(8):228-234. (in Chinese).[5] 杨晓敏,吴炜,何小海,等. 应用SLLE实现手写体数字识别[J]. 光学 精密工程,2009,17(3):641-647. YANG X M, WU W, HE X H, et al.. Realization of handwritten numeral character recognition by supervised locally linear embedding[J]. Opt. Precision Eng., 2009,17(3):641-647. (in Chinese)[6] TURK M, PENTLAND A. Eigenfaces for recognition [J]. Journal of Cognitive Neuroscience, 1991,3(1):71-86.[7] BELHUMEUR P, HESPANFA J, KIREGEMAN D. Eigenfaces vs. fisherfaces: recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(7):711-720.[8] TENENBAUM J B, SILVA V, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290(5500):2319-2323.[9] ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000,290(5500):2323-2326.[10] BELKIN M, NIYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering . Advances in Neural Information Processing Systems 14, Cambridge: MIT Press, 2002:585-591.[11] HE X F, NIYOGI P. Locality preserving projections [J]. Advances in Neural Information Processing Systems 16, Cambridge: MIT Press, 2004:153-160.[12] YAN S C, XU D, ZHANG B Y, et al.. Graph embedding and extensions: A general framework for dimensionality reduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007,29(1):40-51. [13] LIU W, CHANG S F. Robust multi-class transductive learning with graphs . IEEE Conference on Computer Vision and Pattern Recognition, Florida, 2009.[14] BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation [J]. Neural Computation, 2003,15(6):1373-1396.[15] QIAO L S, CHEN S C, TAN X Y. Sparsity preserving projections with applications to face recognition [J]. Pattern Recognition, 2010,43(1):331-341.[16] ZHANG L M, QIAO L S, CHEN S C. Graph-optimized locality preserving projections [J]. Pattern Recognition, 2010,43(6): 1993-2002.[17] CAI D, HE X F, HAN J W. Spectral regression for dimensionality reduction . Illinois, 2007.[18] BELHUMER P N, HESPANHA J, KREIGMAN D. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 17(7):711-720.[19] ALLINSON N M. Face Recognition: From Theory to Applications [M]. Computer and Systems Sciences, 1998:446-456.[20] SIM T, BAKER S, BSAT M. The CMU pose, illumination, and expression database [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25(12):1615-1618.
0
浏览量
251
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构