浏览全部资源
扫码关注微信
武汉大学 电子信息学院,湖北 武汉 430079
收稿日期:2010-04-02,
修回日期:2010-07-23,
网络出版日期:2011-03-22,
纸质出版日期:2011-03-22
移动端阅览
吴本涛, 吴敏渊, 曾霖. 自适应搜索的快速分块跟踪[J]. 光学精密工程, 2011,19(3): 703-708
WU Ben-tao, WU Min-yuan, ZENG Lin. Fast fragment based tracking using adaptive search[J]. Editorial Office of Optics and Precision Engineering, 2011,19(3): 703-708
吴本涛, 吴敏渊, 曾霖. 自适应搜索的快速分块跟踪[J]. 光学精密工程, 2011,19(3): 703-708 DOI: 10.3788/OPE.20111903.0703.
WU Ben-tao, WU Min-yuan, ZENG Lin. Fast fragment based tracking using adaptive search[J]. Editorial Office of Optics and Precision Engineering, 2011,19(3): 703-708 DOI: 10.3788/OPE.20111903.0703.
针对传统的分块跟踪算法计算量大
难以实时地对运动目标进行跟踪这一问题
提出了一种改进的分块跟踪算法。首先
为降低背景噪声对跟踪性能产生的不利影响
提出的算法对目标所在矩形窗口进行了更细致的划分;然后
根据目标运动信息确定搜索范围和搜索中心
采用分层次的自适应搜索算法
在每一层采用不同的搜索策略逐步逼近与目标模板最相似的位置
避免算法将时间过多地浪费在无效位置的运算上;最后
给出了改进算法在DSP上的实现和优化方法。实验结果显示
该改进算法能够在DM642上以30 frame/s的速度处理768 pixel576 pixel的图像
与传统的分块跟踪算法相比
提高了跟踪精度
运算时间减小了约47.5%。该改进算法较好地解决了传统分块算法的缺陷
实现了在嵌入式系统上对运动目标的实时跟踪。
For the large computation and the real-time tracking to be hard to achieve by traditional fragment based tracking algorithm
an improved fragment based algorithm was proposed. Firstly
in order to reduce the negative effect yielded by the background noise
the region of the tracked object was divided into more fragments. Then
the position and the range of the search region were identified according to the movement information of the object. By utilizing a fast hierarchical adaptive search approach which adopts different search patterns in different steps
most of the calculations for invalid positions were skipped
and the coordinate where the candidate was most similar with the object template was obtained quickly. Moreover
the improved algorithm was implemented and optimized on a DSP. Experimental results indicate that the improved algorithm can process the image of 768 pixel576 pixel on DM642 at a processing speed of 30 frame/s. Compared with the traditional fragment based tracking algorithm
it shows a more precise tracking and saves the processing time about 47.5%. These results show that the improved algorithm overcome the shortcomes from traditional fragment based tracking algorithms
and can achieve a real-time tracking with better tracking performance.
施家栋,王建中. 人体运动检测的光流与肤色融合方法 [J]. 北京理工大学学报,2009,29(4):347-350. SHI J D, WANG J ZH. Detection of human motion using a fusion method based on optical flow and skin color [J]. Journal of Beijing Institute of Technology (Natural Science Edition), 2009,29(4):347-350. (in Chinese)[2] 颜佳,吴敏渊,陈淑珍,等. 跟踪窗口自适应的Mean Shift跟踪 [J]. 光学 精密工程, 2009,17(10):2606-2611. YAN J, WU M Y, CHEN SH ZH, et al.. Mean Shift tracking with adaptive tracking window [J]. Opt. Precision Eng., 2009,17(10):2606-2611. (in Chinese)[3] 吴川,杨冬,郝志成. 基于粒子滤波的彩色图像跟踪 [J]. 光学 精密工程, 2009,17(10):2542-2547. WU CH, YANG D, HAO ZH CH. Color image tracking algorithm based on particle filter [J]. Opt. Precision Eng., 2009,17(10):2542-2547. (in Chinese)[4] 魏坤,赵永强,潘泉,等. 基于均值漂移和粒子滤波的红外目标跟踪 [J]. 光电子激光, 2008,19(2):213-217. WEI K, ZHAO Y Q, PAN Q, et al.. IR target tracking based on mean shift and particle filter [J]. Journal of OptoelectronicsLaser, 2008,19(2):213-217. (in Chinese)[5] 张恒,李立春,于起峰. 尺度方向自适应Mean Shift跟踪算法 [J]. 光学 精密工程,2008,16(6):1133-1139. ZHANG H, LI L CH, YU Q F. Scale and direction adaptive Mean Shift tracking algorithm [J]. Opt. Precision Eng., 2008,16(6):1133-1139. (in Chinese)[6] ADAM A, RIVLIN E, SHIMSHONI I. Robust fragments-based tracking using the integral histogram . Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, NY. CVPR, 2006:798-805.[7] LAO Y W, ZHU J D, ZHENG Y F. Sequential particle generation for visual tracking [J]. Circuits and Systems for Video Technology,2009,19(9):1365-1378.[8] SRIKRISHNAN V, NAGARAJ T, CHAUDHURI S. Fragment based tracking for scale and orientation adaptation . Sixth Indian Conference on Computer Vision, Graphics & Image Processing, Bhubaneswar, ICVGIP, 2008,19:328-335. [9] WANG F L, YU SH Y, YANG J. A novel fragments-based tracking algorithm using mean shift . 10th International Conference on Control, Automation, Robotics and Vision, Hanoi, ICARCV, 2008:694-698. [10] LIN CH CH, LIN Y, HSIEH H J. Multi-direction search algorithm for block motion estimation in H.264/AVC [J]. Image Processing, IET,2009,3(2):88-99. [11] ZHU S, MA K K. A new diamond search algorithm for fast block matching motion estimation [J]. IEEE Trans. Image Processing, 2000,9(2):287-290. [12] http://www.cvg.rdg.ac.uk/PETS2009/.
0
浏览量
604
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构