浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 中国科学院 研究生院 北京,100039
收稿日期:2010-03-31,
修回日期:2010-05-10,
网络出版日期:2011-04-26,
纸质出版日期:2011-04-26
移动端阅览
王永刚, 崔天刚, 马文生, 陈斌, 陈波. Wolter-I型掠入射反射镜的加工[J]. 光学精密工程, 2011,19(4): 743-753
WANG Yong-gang, CUI Tian-gang, MA Wen-sheng, CHEN Bin, CHEN Bo. Fabrication of Wolter-I grazing mirror[J]. Editorial Office of Optics and Precision Engineering, 2011,19(4): 743-753
王永刚, 崔天刚, 马文生, 陈斌, 陈波. Wolter-I型掠入射反射镜的加工[J]. 光学精密工程, 2011,19(4): 743-753 DOI: 10.3788/OPE.20111904.0743.
WANG Yong-gang, CUI Tian-gang, MA Wen-sheng, CHEN Bin, CHEN Bo. Fabrication of Wolter-I grazing mirror[J]. Editorial Office of Optics and Precision Engineering, 2011,19(4): 743-753 DOI: 10.3788/OPE.20111904.0743.
针对Wolter-I型掠入射反射镜柱面内表面的特殊结构
研究了弹性球状小磨头以旋偏方式运动逐环带修正面形时的去除函数模型。分析了相关工艺参数
如磨头-工件旋转角速度比、旋偏角大小、磨头中心压强以及磨头和工件的趋近距离对去除函数的影响
通过实验获得了驻留时间和去除函数中心去除深度的关系。采取两步加工法控制研抛后的表面质量
分析表明:当磨头-工件角速度比为1.41时
反射镜的表面质量最好。介绍了计算机控制光学表面成形(CCOS)法加工Wolter-I型掠入射反射镜的过程。选择微晶玻璃为反射镜的镜胚
在自行研制的研抛设备上
以不同粒径的氧化铈作为抛光液
对金刚砂砂轮粗磨后的工件进行抛光。通过改变磨头相对工件的压入深度
获得不同大小的磨头去除区域
实现了对上一个抛光周期后的残留误差的有效去除。最终获得的反射镜面形精度为PV:1.39 m
RMS:0.34 m
圆度均方根误差优于0.1 m。实验结果表明:提出的两步法旋偏加工方案可用于掠入射反射镜的加工。
For the special structure of cylindrical inner surface of a Wolter-I grazing mirror
the removal function of an elastic ball tool with deflected rotation motion was researched
and the relations between the max removal depth of removal function
dwell time and other parameters obtained by experiments were demonstrated.By using a 2-step method for polishing
it shows that when the ratio of rotating angle velocity to tool-workpiece is 1.41
the surface quality is in the best state. Furthermore
the fabrication of Wolter-I grazing mirror base on Computer Control Optical Surface(CCOS) was introduced. In the research
Zerodur glass was selected as mirror substrates and it was polished by CeO abrasive on a Digital Control(NC) platform developed by ourselves. By changing the distance between the tool and the workpiece
the removal functions in different contact areas were determined in the experiments
and the residual error from previous polishing process was corrected effectively. Using two kinds of measurement devices to outline the surface profile
it shows that the final surface figure of the mirror is 1.39 m (PV)
0.34 m (RMS) and the error of circularity is less than 0.1 m (RMS). These results demonstrate the feasibility of fabricating Wolter-I grazing mirror with the 2-step deflected rotation method.
LEMEN J R,DUNCAN D,EDWARDSS C, et al.. Solar X-Ray Imager for GOES [J]. SPIE, 2004,5171:65-76.[2] 陈波,陈淑妍,巩岩. 一种复合型空间软X射线-极紫外波段望远镜设计[J]. 光学技术, 2004,30(2):242-244. CHEN B, CHEN SH Y, GONG Y. Design of a compound soft X-ray and EUV telescope [J]. Optical Technique, 2004,30(2):242-244. (in Chinese)[3] 王权陡,余景池,张峰. 数控抛光中不同运动方式下小抛光盘抛光特性之比较 [J]. 光学 精密工程,1999,7(5):73-79. WANG Q D, YU J CH, ZHANG F. Polishing performance comparison of small polishing pad worked in different motion model in computer controlled optical polishing [J]. Opt. Precision Eng., 1999,7(5):73-79. (in Chinese)[4] 王旭,张学军. 固着磨料加工碳化硅反射镜的微观理论模型 [J]. 光学 精密工程,2009,17(3):513-518. WANG X, ZHANG X J. Micro theoretical model for grinding SiC mirror with fixed abrasive [J]. Opt. Precision Eng., 2009,17(3):513-518. (in Chinese)[5] 王旭,张峰,张学军. 固着磨料抛光碳化硅反射镜的去除函数 [J]. 光学 精密工程,2009,17(5):951-957. WANG X, ZHANG F, ZHANG X J. Removal function of computer controlled polishing SiC mirror with fixed abrasive [J]. Opt. Precision Eng., 2009,17(5):951-957. (in Chinese)[6] 王旭,张学军,徐领娣,等. 固着磨料加工碳化硅反射镜的实验 [J]. 光学 精密工程,2009,17(4):771-777. WANG X, ZHANG X J, XU L D, et al.. Experiment of grinding SiC mirror with fixed abrasive [J]. Opt. Precision Eng., 2009, 17(4):771-777. (in Chinese)[7] YACOBS S D. International innovations in optical finishing [J]. SPIE,2004,5523:264-272.[8] WALKER D D, BEAUCAMP A T H, BROOKS D, et al.. Novel CNC polishing process for control of form and texture on aspheric surfaces [J]. SPIE, 2002,4767:99-105.[9] KIM D W, KIM S W. Novel simulation technique for efficient fabrication of 2m class hexagonal segments for extremely large telescope primary mirrors [J]. SPIE, 2005,5638:48-59.[10] KIM D W, PARK W H, KIM S W, et al.. Parametric modeling of edge effects for polishing tool influence functions [J]. Optics Express, 2009,17(7):5656-5665.[11] WALKER D D, BEAUCAMP A T H, BINGHAM R G, et al.. The precessions process for efficient production of aspheric optics for large telescopes and their instrumentation [J]. SPIE, 2003,4842:73-84.[12] KIM D W, KIM S W. Static tool influence function for fabrication simulation of hexagonal mirror segments for extremely large telescopes [J]. Optics Express, 2005,13(3):910-917.[13] WALKER D D. The 'Precessions tooling for polishing and figuring flat, spherical and aspheric surfaces [J]. Optics Express, 2003,11(8):958-964.[14] 王永刚,崔天刚,马文生,等. 弹性球状小磨头加工WolterⅠ型掠入射反射镜的去除函数[J]. 光学 精密工程, 2011, 19(1):10 -16. WANG Y G, CUI T G, MA W SH, et al.. Removal function for fabrication of WolterⅠgrazing mirror by elastic ball tool [J]. Opt. Precision Eng., 2011, 19(1):10 -16. (in Chinese)[15] JONES R A, RUPP W J. Rapid optical fabrication with computer-controlled optical surfacing [J]. Optical Engineering, 1991,30(12):1962-1968.[16] JONES R A, RUPP W J. Rapid optical fabrication with CCOS [J]. SPIE, 1990,1333:34-43.[17] LEE H C, YANG M Y. Dwell time algorithm for computer-controlled polishing of small axis-symmetrical aspherical lens mold [J]. Optical Engineering, 2001,40(9):1936-1943.[18] EUGENE W. Cylindrical optic figuring dwell time optimization [J]. SPIE, 2000,4138:25-32.[19] 崔天刚,王永刚,马冬梅,等. Wolter I型反射镜面形在线检测装置设置[J]. 光学 精密工程,2010, 18(8):1801 -1806. CUI T G, WANG Y G, MA D M, et al.. Design of surface profile online measuring device used for Wolter Type I mirror [J]. Opt. Precision Eng., 2010, 18(8):1801 -1806. (in Chinese)[20] YELLOWHAIR J, BURGE J H. Analysis of a scanning pentaprism system for measurements of large flat mirrors [J]. Applied Optics, 2007,46(35):8466-8474.
0
浏览量
126
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构