浏览全部资源
扫码关注微信
北京大学 微电子学研究院 微米纳米加工技术国家级重点实验室 北京,100871
收稿日期:2010-03-07,
修回日期:2010-06-17,
网络出版日期:2011-04-26,
纸质出版日期:2011-04-26
移动端阅览
李博翰, 于晓梅. 电容读出式非制冷红外焦平面阵列设计[J]. 光学精密工程, 2011,19(4): 762-767
LI Bo-han, YU Xiao-mei. Design of capacitive-read infrared FPA[J]. Editorial Office of Optics and Precision Engineering, 2011,19(4): 762-767
李博翰, 于晓梅. 电容读出式非制冷红外焦平面阵列设计[J]. 光学精密工程, 2011,19(4): 762-767 DOI: 10.3788/OPE.20111904.0762.
LI Bo-han, YU Xiao-mei. Design of capacitive-read infrared FPA[J]. Editorial Office of Optics and Precision Engineering, 2011,19(4): 762-767 DOI: 10.3788/OPE.20111904.0762.
设计了一种长支腿式电容读出式红外焦平面阵列结构
并分析了这种像元结构的热导率、热机械灵敏度和热时间常数
从中优化出了该模型的部分结构参数
并以此为依据对像元整体尺寸进行了设计。在该尺寸模型下
得到的像元热导率为310
-7
W/K
热机械灵敏度为162 nm/K
热时间常数为35 ms
该热时间常数满足人眼识别频率的需要。讨论了焦平面阵列能够高灵敏度工作的关键参数噪声等效温差
分析计算显示
得到噪声等效温差为6 mK。进行了仿真计算
得到的噪声等效温差为5 mK
与计算结果非常吻合。实验表明
该系统的噪声等效温差足够小
可满足稳定输出信号的需要。最后
基于牺牲层工艺制备了长支腿结构焦平面阵列
验证了制备工艺的可行性。
With the aim to improve the performance of an infrared detector and to enhance the characteristics of a Focal Plane Array(FPA)
a capacitive-read infrared FPA with the structure of cantilever element in a fold-line leg and a long-line leg was designed. The thermal conductivity
thermo-mechanical sensitivity and the thermal time constant of the structure were discussed and optimized
then these parameters were set to be 310
-7
W/K
162 nm/K and 35 ms
respectively. The sensitivity of design is fast enough to satisfy the requirements of human eyes.Furthermore
the Noise Equivalent Temperature Difference( NETD) which is key for the FPA detection was discussed
and calculated result shows that the NETD of the designed FPA is 6 mK. A simulation for the NETD was also performed
which shows the NETD is 5 mK. Experiments indicate that the simulation result agrees with that of the calculation well and show that the NETD is small enough to satisfy the resolution for signal read-out. Finally
the capacitive-read FPA was fabricated based on silicon micromachining technology successfully.
许中胜. 红外探测系统参数关系及实际应用[J]. 光学 精密工程, 1999,7(4):81-85. XU ZH SH. Infrared detection system parameter relation formula and practical application[J]. Opt. Precision Eng., 1999,7(4):81-85.[2] DATSKOSA P G, LAVRIK N V, RAJIC S. Performance of uncooled micro cantilever thermal detectors[J]. Review of Scientific Instruments: 2004,75(1):4-10.[3] KRUSE P W. Priniple of uncooled infrared focal plane arrays[J]. Semiconductors Semimetals, 1997,47:17-44.[4] HUNTER S R,AMANTEA R A. High-sensitivity uncooled micro cantilever infrared imaging arrays[J].SPIE,2006,6206(10):1117-1129.[5] ZHAO Y,MAO M Y, HORWITZ R, et al..Optomechanical uncooled infrared imaging system: design, microfabrication, and performance[J]. Journal of microelectromechanical systems, 2002,11(2):136-146.[6] WOOD RA, SKATRUD DD. Uncooled Infrared Imaging Arrays and Systems[M].New York:Academic Press,1997.[7] ROARK R J,YOUNG W C. Formulas for Stress and Strain[M]. New York:McGraw, 1972.[8] LAI J,PERAZZO T,SHI Z,et al.. Optimization and performance of high-resolution micro-optomechanical thermal sensors[J]. Sensors and Actuators, 1997,58(A):113-119.[9] 代少升, 张新立. 基于SOPC的红外焦平面阵列实时非均匀性校正研究[J]. 光学 精密工程, 2009,17(4):854-858. DAI SH SH, ZHANG X L. Real-time nonuniformity correction of infrared focal plane arrays by system on programmable chip[J]. Opt. Precision Eng., 2009,17(4):854-858.[10] LI B. Design and simulation of an uncooled double-cantilever microbolometer with the potential for~mK NETD[J]. Sensors and Actuators, 2004,112(A):351-359.
0
浏览量
571
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构