浏览全部资源
扫码关注微信
1. 中国科学院 研究生院 北京,100039
2. 中国科学院 电工研究所 微纳加工研究部 北京,100190
收稿日期:2010-08-27,
修回日期:2010-09-29,
网络出版日期:2011-04-26,
纸质出版日期:2011-04-26
移动端阅览
陈代谢, 殷伯华, 林云生, 初明璋, 韩立. 大范围高速原子力显微镜的前馈反馈混合控制方法[J]. 光学精密工程, 2011,19(4): 836-843
CHEN Dai-xie, YIN Bo-hua, LIN Yun-sheng, CHU Ming-zhang, HAN Li. Feed-forward and feed-back controller for large-range and high-speed AFM[J]. Editorial Office of Optics and Precision Engineering, 2011,19(4): 836-843
陈代谢, 殷伯华, 林云生, 初明璋, 韩立. 大范围高速原子力显微镜的前馈反馈混合控制方法[J]. 光学精密工程, 2011,19(4): 836-843 DOI: 10.3788/OPE.20111904.0836.
CHEN Dai-xie, YIN Bo-hua, LIN Yun-sheng, CHU Ming-zhang, HAN Li. Feed-forward and feed-back controller for large-range and high-speed AFM[J]. Editorial Office of Optics and Precision Engineering, 2011,19(4): 836-843 DOI: 10.3788/OPE.20111904.0836.
为了扩大原子力显微镜(Atomic Force Microscope
AFM)使用范围
研制了一套大范围高速AFM系统。针对大范围高速扫描时
Z
方向控制问题
提出了前馈反馈混合控制方法。前馈控制包括自动调平前馈和基于前一行扫描前馈
前者通过多线扫描确定样品倾斜位置
将所有扫描点的倾斜位移差用函数式表达
然后将其换算为
Z
向驱动电压后驱动下扫描器运动;后者利用前一行扫描高度数据作为当前行
Z
向扫描器驱动的参考输入。反馈控制为在普通比例-积分(PI)控制基础上改进的动态
P
参数PI控制
P
参数设置与误差大小有关。实验结果表明:采用本控制方法最大控制误差由40.17 nm减小为6.01 nm
误差均方根值由22.85 nm减小为2.01 nm
明显抑制了误差信号
提高了
Z
向控制效果
获得了更精确的高度图像。
In order to expand the application scope of Atomic Force Microscopes(AFMs)
a large-range and high-speed AFM was developed. A feed-forward and feed-back algorithm is proposed to deal with the
Z
-control of the AFM. The feed-forward controller includes an auto leveling controller and a last line based controller. The former determines the location of sample tilt by multi-lines scan
and the tilt displacements of all scan points are expressed by a formula.Then
it is transformed into
Z
control voltages to drive the down-stage. The latter uses the last line height signal as the reference input of
Z
-control in the current line scan. The feed-back controller is a proportional integral(PI) controller whose
P
parameter is dynamically changed with error signals. Experimental results indicate that the max error value by proposed method is decreased from 40.17 nm to 6.01 nm
and the root-mean-square error is decreased from 22.85 nm to 2.01 nm. It suppresses error signals evidently
enhances the ef- fectiveness of
Z
-control
and makes image more precise.
BINNING G, ROHRER G. Atomic force microscope[J]. Physical Review Letters,1986,56:930-933.[2] BHUSHAN B. Scanning Probe Microscopy in Nanoscience and Nanotechnology[M]. Springer,2010.[3] CASUSO I, KODERA N, GRIMELLEC C L, et al.. Contact-mode high-resolution high-speed atomic force microscopy movies of the purple membrane[J]. Biophysical Journal, 2009,97:1354-1361.[4] ADAMS J D, ROGERS B, MINNE S C, et al.. Self-sensing tapping mode atomic force microscopy[J]. Sensors and Actuators, 2005,A121:262-266.[5] ROGERS B, SULCHEK T, MURRAY K, et al.. High speed tapping mode atomic force microscopy in liquid using an insulated piezoelectric cantilever[J]. Rev Sci Instrum, 2003,74:4683-4686.[6] HANSMA P K,SCHITTER G,FANTNER G E, et al..High-speed atomic force microscopy[J]. Applied Physics,2006,31:601-602.[7] ANDO T,UCHIHASHI T,KODERA N. High-speed AFM and nano-visualization of biomolecular processes[J]. Pflugers Arch-Eur J Physiol,2008,456:211-225.[8] CARBERRY D M,PICCO L,DUNTON P G,et al.. Mapping real-time images of high-speed AFM using multitouch control[J].Nanotechnology, 2009,20:434018-434023.[9] PICCO L M, BOZEC L, ULCINAS A, et al.. Breaking the speed limit with atomic force microscopy[J]. Nanotechnology, 2007,18:044030-044034.[10] ZHOU Y SH,SHANG G Y,CAI W,et al.. Cantilevered bimorph-based scanner for high speed atomic force microscopy with large scanning range. Rev. Sci. Instrum, 2010, 81:053708-053713.[11] SCHITTER G,ASTROM K J,DEMARTINI B E, et al.. Design and modeling of a high-speed AFM-scanner [J].IEEE Transactions on Control Systems Technology, 2007, 15 (5):906-915. [12] PC/104 Specification[S], PC/104 Consortium.[13] 范进,金声震,孙才红. 超高速FFT处理器的设计与实现[J]. 光学 精密工程,2009,17(9):2241-2246. FAN J, JIN SH ZH, SUN C H. Design and implementation of hyper-speed FFT processor[J]. Opt. Precision Eng., 2009,17(9):2241-2246. (in Chinese)[14] LEANG K K,DEVASIA S. Feedback-linearized inverse feedforward for creep, hysteresis, and vibration compensation in AFM piezoactuators[J]. IEEE Transactions on Control Systems Technology, 2007,15(5):927-935.
0
浏览量
614
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构