浏览全部资源
扫码关注微信
浙江师范大学 工学院,浙江 金华,321004
收稿日期:2010-11-11,
修回日期:2011-01-25,
网络出版日期:2011-04-26,
纸质出版日期:2011-04-26
移动端阅览
王鸿云, 高春甫, 阚君武, 李泳鲜, 王笑. 磁场作用下磁流变液的挤压与拉伸特性[J]. 光学精密工程, 2011,19(4): 850-856
WANG Hong-yun, GAO Chun-fu, KAN Jun-wu, LI Yong-xian, WANG Xiao. Compressive and tensive characteristics of magnetorheological fluid under magnetic fields[J]. Editorial Office of Optics and Precision Engineering, 2011,19(4): 850-856
王鸿云, 高春甫, 阚君武, 李泳鲜, 王笑. 磁场作用下磁流变液的挤压与拉伸特性[J]. 光学精密工程, 2011,19(4): 850-856 DOI: 10.3788/OPE.20111904.0850.
WANG Hong-yun, GAO Chun-fu, KAN Jun-wu, LI Yong-xian, WANG Xiao. Compressive and tensive characteristics of magnetorheological fluid under magnetic fields[J]. Editorial Office of Optics and Precision Engineering, 2011,19(4): 850-856 DOI: 10.3788/OPE.20111904.0850.
为研究磁流变液在不同磁场作用下的挤压与拉伸力学性能
建立了用于测试磁流变液挤压与拉伸特性的实验装置
并通过ANSYS/Multiphysics对此实验装置磁路的磁感应强度分布进行了仿真分析。利用此装置研究了磁流变液在不同外加磁场强度下的挤压和拉伸特性
并建立了拉伸屈服应力与剪切屈服应力之间的关系。挤压实验表明
磁流变液在挤压应变约为0.15时具有最小的压缩弹性模量;当挤压应变大于0.15时
挤压应力和挤压弹性模量与挤压应变表现为指数关系
且指数随着外加磁场的增大呈上升趋势。拉伸屈服应力约为剪切屈服应力的4倍
据此计算得到的剪切屈服应变角在13.8~16.9
验证了物理模型对磁流变液剪切应力描述的合理性。
The compressive and tensive characteristics of Magnetorheological(MR) fluid were investigated with a magnetic field. A experiment setup was designed and fabricated to test the compressive and tensive properties and the magnetic behavior of the equipment was analysed by using the ANSYS/Multiphysics. The compressive and tensive resistance of the MR fluid was then measured for different field strengths
and the relation between tensile yield stress and shear yield stress for the same magnetic field was developed. The compressing tests show that the MR fluid has a smaller compressive modulus when a compressive strain is about 0.15. The compressive stress and compressive modulus have an exponential relationship with the compressive strain when they are higher than 0.15.Moreover
the exponent increases with the enhancement of the applied magnetic field. The tensile yield stress is about four times of shear yield stress. According to the results above
The shear yield angle is calculated to be 13.8-16.9. Obtained results prove the retionability of the physical model for describing the shere stress of MR fluid.
麻建坐,贺建民,黄金. 圆筒式磁流变离合器传动特性分析[J]. 重庆工学院学报(自然科学版), 2009(3):34-38. MA J Z, HE J M, HUANG J. Analysis on transmission properties of a cylindrical magnetorheological clutch[J]. Journal of Chongqing Institute of Technology (Natural Science), 2009(3):34-38. (in Chinese)[2] 李军强,臧希 喆 ,赵杰. 旋转式磁流变阻尼器优化设计与力学性能试验[J]. 机械工程学报, 2010,46(5):177-182. LI J Q, ZANG X ZH, ZHAO J. Optimization design and mechanic characteristic experiment of the rotary magnetorheological damper[J]. Journal of Mechanical Engineering, 2010,46(5):177-182. (in Chinese)[3] 李志华,林阳,朱丰友,等. 圆筒式磁流变制动器结构与磁路耦合的优化设计[J]. 工程设计学报, 2009,16(4):261-265. LI ZH H, LIN Y, ZHU F Y, et al.. Optimization design of structure and magnetic circuit for drum-type magnetorheo jogical brake[J]. Journal of Engineering Design, 2009,16(4):261-265. (in Chinese)[4] 石峰,戴一帆,彭小强,等. 高精度光学表面磁流变修形[J]. 光学 精密工程, 2009,17(8):1859-1864. SHI F, DAI Y F, PEN G X Q, et al.. Magnetorheological finishing for high-precision optical surface[J]. Opt. Precision Eng.,2009,17(8):1859-1864. (in Chinese)[5] 宋辞,戴一帆,彭小强,等. 光学镜面磁流变抛光的后置处理[J]. 光学 精密工程, 2010,18(8):1715-1721. SONG C, DAI Y F, PENG X Q, et al.. Post processing for magnetorheological finishing of optical mirrors[J]. Opt. Precision Eng., 2010,18(8):1715-1721. (in Chinese)[6] 王卓,吴宇列,戴一帆,等. 光学材料研磨亚表面损伤的快速检测及其影响规律[J]. 光学 精密工程, 2008,16(1):16-21. WANG ZH, WU Y L,DAI Y F, et al.. Rapid detection of subsurface damage of optical materials in lapping process and its influence regularity[J]. Opt. Precision Eng., 2008,16(1):16-21. (in Chinese)[7] 王鸿云,郑惠强,李泳鲜. 基于挤压模式下磁流变液力学行为的实验研究[J]. 仪器仪表学报,2009,30(4):848-851. WANG H Y, ZHENG H Q, LI Y X. Mechanical behavior of magnetorheological fluid under compression mode[J]. Chinese Journal of Scientific Instrument, 2009,30(4):848-851. (in chinese)[8] MAZLAN S A, EKREEM N B, OLABI A G. An investigation of the behaviour of magnetorheological fluids in compression mode[J]. Journal of Materials Processing Technology, 2008,201(1-3):780-785.[9] WANG J, FENG N, MENG G, et al.. Vibration control of rotor by squeeze film damper with magnetorheological fluid[J]. Journal of Intelligent Material Systems and Srtuctures, 2006,17:353-357.[10] CARMIGNANI C, FORTE P, RUSTIGHI E. Design of a novel magneto-rheological squeeze-film damper[J]. Smart Material and Structure, 2006,15:164-170.[11] TAO R. Super-strong magnetorheological fluids[J]. Journal of Physics: Condensed Matter, 2001,13:979-999.[12] GINDER J M. Behavior of magnetorheological fluids[J]. MRS Bulletin, 1998,23(8):26-29.[13] WINSLOW W M. Induced fibrilation of suspensions[J]. Journal of Applied Physics, 1949,20:1137-1140.[14] WANG Y R, MEN S Q, et al.. The interaction between two spheres in silicone oil under an electric field[J]. International Journal of Modern Physics B, 1999,13:1767-1774.[15] TAO R. Structure and dynamics of bipolar fluids under strong shear[J]. Chemical Engineering Science, 2006,21:2186-2190.
0
浏览量
678
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构