浏览全部资源
扫码关注微信
国防科技大学 电子科学与工程学院,长沙 湖南 410073
收稿日期:2010-10-18,
修回日期:2010-11-23,
网络出版日期:2011-04-26,
纸质出版日期:2011-04-26
移动端阅览
高恒振, 万建伟, 粘永健, 王力宝, 徐湛. 组合核函数支持向量机高光谱图像融合分类[J]. 光学精密工程, 2011,19(4): 878-883
GAO Heng-zhen, WAN Jian-wei, NIAN Yong-jian, WANG Li-bao, XU Zhan. Fusion classification of hyperspectral image by composite kernels support vector machine[J]. Editorial Office of Optics and Precision Engineering, 2011,19(4): 878-883
高恒振, 万建伟, 粘永健, 王力宝, 徐湛. 组合核函数支持向量机高光谱图像融合分类[J]. 光学精密工程, 2011,19(4): 878-883 DOI: 10.3788/OPE.20111904.0878.
GAO Heng-zhen, WAN Jian-wei, NIAN Yong-jian, WANG Li-bao, XU Zhan. Fusion classification of hyperspectral image by composite kernels support vector machine[J]. Editorial Office of Optics and Precision Engineering, 2011,19(4): 878-883 DOI: 10.3788/OPE.20111904.0878.
针对高光谱图像分类
提出了一种利用组合核函数融合目标光谱域和空域信息的支持向量机学习算法。该算法首先用主成分分析方法对高光谱图像进行特征提取和降维
用虚拟维数估计策略预估原始图像的本征维数
并且在预估的基础上确定要保留的主成份分量数目;然后用数学形态学操作在选取的主分量图像上提取目标的形态信息
得到扩展的空域形态矢量。最后
通过不同的组合策略
构造组合核函数
从而在分类器中引入空域信息
和原有的谱域信息一起
利用支持向量机进行分类。高光谱数据实验表明
在训练时间没有显著差别的情况下
总体分类精度和Kappa系数均提高了2%左右。实验表明
本文提出的方法较单独使用谱域或空域信息进行分类具有一定的优越性。
For hyperspectral image classification
a Support Vector Machine (SVM) algorithm with composite kernels was presented to fuse both the spectral information and spatial information of the image. The algorithm adopts Principal Component Analysis (PCA) algorithm to extract the image feature and reduce the dimension for hyperspectral image
and uses the Virtual Dimension (VD) algorithm to estimate the Intrinsic Dimension (ID) of the image. Then
the remained number of Principal Components (PCs) was determined on the basis of the ID.Furthermore
spatial features were extracted by mathematical morphology from the remained PCs
and the Extended Morphological Profile (EMP) vector of image was obtained. By combination of different strategies to construct composite kernels
the spatial information was introduced into the classifier to implement the classification with the SVM and based on both the spectral information and spatial information. Hyperspectral image experiments indicate that the overall accuracy and Kappa coefficients of the proposed approach increase about 2% without increasing the training time obviously. Compared with the classifiers only using the spatial or spectral information
the proposed method shows a lot advantages.
陈进. 高光谱图像分类方法研究 . 长沙:国防科学技术大学,2010. CHEN J. On Classification Method of Hyperspectral Images . Changsha: National University of Defense Technology,2010. (in Chinese)[2] MELGANI F,BRUZZONE L. Classification of hyperspectral remote sensing images with support vector machines [J]. IEEE Trans. Geosci. Remote Sens., 2004,42(8):1778-1790.[3] CAMPS-VALLS G, BRUZZONE L. Kernel-based methods for hyperspectral image classification [J]. IEEE Trans. Geosci. Remote Sens., 2005,43(6):1351-1362.[4] MATHIEU F, BENEDIKTSSON J A, CHANUSSOT J, et al.. Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles [J]. IEEE Trans. Geosci. Remote Sens., 2008,46(11):3804-3814.[5] TUIA D, PACIFICI F, KANEVSKI M, et al.. Classification of very high spatial resolution imagery using mathematical morphology and support vector machines [J], IEEE Trans. Geosci. Remote Sens., 2009,47(11):3866-3879.[6] FAUVEL M. Spectral and spatial methods for the classification of urban remote sensing data . Reykjavik:University of Iceland, 2007.[7] TARABALKA Y, BENEDIKTSSON J A, CHANUSSOT J. Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques [J]. IEEE Trans. Geosci. Remote Sens., 2009,47(8):2973-2987.[8] 粘永健,王展,万建伟,等. 面向异常检测的高光谱图像压缩技术 [J]. 国防科技大学学报,2009,31(3):48-52. NIAN Y J, WANG ZH, WAN J W, et al.. Compression technique for hyperspectral imagery oriented anomaly detection[J]. Journal of National University of Defense Technology,2009,31(3):48-52. (in Chinese)[9] 苏令华,李纲,衣同胜,等. 一种稳健的高光谱图像压缩方法[J]. 光学 精密工程,2007,15(10):1609-1615. SU L H, LI G, YI T SH, et al.. A robust hyperspectral image compression method [J]. Opt. Precision Eng., 2007,15(10):1609-1615. (in Chinese)[10] CHANG C I, DU Q. Estimation of number of spectrally distinct signal sources in hyperspectral imagery [J]. IEEE Trans. Geosci. Remote Sens., 2004,42(3):608-619.[11] ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/92 AV3C/ .[12] GONZALEZ R C, WOODS R E. Digital Image Processing [M].USA:Prentice Hall, 2008.
0
浏览量
992
下载量
14
CSCD
关联资源
相关文章
相关作者
相关机构