浏览全部资源
扫码关注微信
上海大学 机电工程与自动化学院,上海 200072
收稿日期:2010-07-23,
修回日期:2010-08-12,
网络出版日期:2011-04-26,
纸质出版日期:2011-04-26
移动端阅览
王梅, 屠大维, 周许超. SIFT特征匹配和差分相乘融合的运动目标检测[J]. 光学精密工程, 2011,19(4): 892-899
WANG Mei, TU Da-wei, ZHOU Xu-Chao. Moving object detection by combining SIFT and differential multiplication[J]. Editorial Office of Optics and Precision Engineering, 2011,19(4): 892-899
王梅, 屠大维, 周许超. SIFT特征匹配和差分相乘融合的运动目标检测[J]. 光学精密工程, 2011,19(4): 892-899 DOI: 10.3788/OPE.20111904.0892.
WANG Mei, TU Da-wei, ZHOU Xu-Chao. Moving object detection by combining SIFT and differential multiplication[J]. Editorial Office of Optics and Precision Engineering, 2011,19(4): 892-899 DOI: 10.3788/OPE.20111904.0892.
针对运动目标检测的难点问题
提出了一种结合尺寸不变特征变换(SIFT)和差分相乘算法的运动目标检测方法。首先
用SIFT特征匹配算法配准运动图像的旋转、缩放和平移量
利用SIFT匹配的稳定性和准确性
精确补偿运动摄像机下的背景图像。然后
用差分相乘方法
准确分割出运动目标的轮廓。最后
通过实拍视频序列的试验
证明算法的有效性和可行性。系列实验显示
连续4帧图像差分相乘的方法即能够较好地满足应用要求。实验结果表明
SIFT特征匹配和差分相乘融合的方法具有较好的鲁棒性和抗噪能力
对于摄像机运动、亮度变化、遮挡等影响因素具有较强的适应能力。
For the difficulty of moving object detection by a moved camera
a method for detecting dynamic background caused by camera motion was proposed by combining a Scale Invariant Feature Transform(SIFT) and a differential multiplication. Firstly
the image registration based on SIFT features was applied to calculate transformation parameters
including translation factors
rotation angles and scaling coefficients
and to provide a robust matching for realizing the motion compensation precisely. Then
the object segmentation based on the differential multiplication was introduced to detect moving objects accurately. Finally
the experiments on the video sequences were performed to verify the robustness and validity of the method.Experiments show that instead of 6 or more frames
4 frames are enough for the differential multiplication in practical applications. The detection method is robust and denoising in dynamic scenes and has good adaptability to changing illumination
occlusion and camera movement.
RADKE R J, ANDRA S, AL-KOFAHI O,et al.. Image change detection algorithms: a systematic survey [J]. IEEE Trans. on Image Processing, 2005,14(3):1-14.[2] ELHABIAN S Y, EL-SAYED K M, AHMED S H. Moving object detection in spatial domain using background removal techniques -State-of-art [J]. Recent Patents on Computer Science,2008,1(1):32-54.[3] 朱碧婷, 郑世宝. 基于高斯混合模型的空间域背景分离法及阴影消除法[J]. 中国图象图形学报, 2008,13(10):1906-1909. ZHU B T, ZHENG SH B. Space domain background subtraction and shadow elimination based on gaussian mixture model [J]. Journal of Image and Graphics, 2008,13(10):1906-1909. (in Chinese)[4] ELGAMMAL A, DURAISWAMI R, HARWOOD D,et al.. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance [J]. Proc. of the IEEE,2002,90(7):1151-1163.[5] KATO J, WATANABE T, JOGA S,et al.. An HMM-based segmentation method for traffic monitoring movies [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002,24(9):1291-1296.[6] SASA G,LONCARIC S. Spatio-temporal image segmentation using optical flow and clustering algorithm . First Int. Work-shop on Image and signal Processing and Analysis, 2000:63-68.[7] BARRON J L, FLEET D J, BEAUCHEMIN S S. Performance of optical flow techniques [J]. International Journal of Computer Vision, 1994,12(1):42-77.[8] REN Y, CHUA C S, HO Y K. Motion detection with non-stationary background [J]. Machine Vision and Application, 2003,13(5):332-343.[9] 王会峰, 刘上乾, 汪大宝,等. 基于序列图像特征配准的摄像机旋转补偿算法[J]. 光学 精密工程, 2008,16(7):1330-1334. WANG H F, LIU SH Q, WANG D B,et al.. Video camera rotation compensation algorithm based on feature matching of sequence image frames[J]. Opt. Precision Eng., 2008,16(7):1330-1334. (in Chinese)[10] 丁雪梅, 王维雅, 黄向东. 基于差分和特征不变量的运动目标检测与跟踪[J]. 光学 精密工程, 2007,15(4):570-576. DING X M, WANG W Y, HUANG X D. New method for detecting and tracking of moving target based on difference and invariant [J]. Opt. Precision Eng., 2007,15(4):570-576. (in Chinese)[11] LENG B, DAI Q. Video object segmentation based on accumulative frame difference . Proc. Of Picture Coding Symposium, 2007:1155.[12] COLLINS R T, LIPTON A J, KANADE T,et al.. A system for video surveillance and monitoring . Technical report, The Robotics Institute, Carnegie Mellon University, 2000.[13] HUANG J Z, TAN T N, MA L,et al.. Phase correlation based iris image registration model [J]. Journal of Computer Science and Technology, 2005,20(3):419-425.[14] REDDY B S,CHATTERJI B N. An FFT-based technique for translation, rotation, and scale-invariant image registration [J]. IEEE Trans. on Image Processing, 1996,5(8):1266-1271.[15] JIA R, ZHANG H, WANG L,et al.. Digital image stabilization based on phase correlation . Int. Conf. on Artificial Intelligence and Computational Intelligence, 2009:485-489. [16] ZHAN C, DUAN X, XU S,et al.. An improved moving object detection algorithm based on frame difference and edge detection . Fourth Int. Conf. on Image and Graphics, 2007:519-523.[17] DAVID G LOWE. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004,60(3):91-110.[18] 纪华, 吴元昊, 孙宏海,等. 结合全局信息的SIFT特征匹配算法[J]. 光学 精密工程, 2009,17(2):439-444.(in Chinese) JI H, WU Y H, SUN H H,et al.. SIFT feature matching algorithm with global information [J]. Opt. Precision Eng., 2009,17(2):439-444. (in Chinese)[19] 周许超,屠大维,陈勇,等. 基于相位相关和差分相乘的动态背景下运动目标检测[J]. 仪器仪表学报, 2010,31(5):980-983. ZHOU X CH, TU D W, CHEN Y,et al.. Moving object detection under dynamic background based on phase-correlation and differential multiplication [J]. Chinese Journal of Scientific Instrument, 2010,31(5):980-983. (in Chinese)[20] GONZALEZ R C,WOODS R E. Digital Image Processing [M]. 3rd. Prentice Hall, 2008.
0
浏览量
915
下载量
22
CSCD
关联资源
相关文章
相关作者
相关机构