浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 中国科学院 研究生院 北京,100039
收稿日期:2010-06-25,
修回日期:2010-09-09,
网络出版日期:2011-05-26,
纸质出版日期:2011-05-26
移动端阅览
陈夫林, 张景旭, 吴小霞, 范磊. 620 mm薄镜面的主动支撑结构及面形校正[J]. 光学精密工程, 2011,19(5): 1022-1029
CHEN Fu-lin, ZHANG Jing-xu, WU Xiao-xia, FAN Lei. Supporting structure of 620 mm thin primary mirror and its active surface correction[J]. Editorial Office of Optics and Precision Engineering, 2011,19(5): 1022-1029
陈夫林, 张景旭, 吴小霞, 范磊. 620 mm薄镜面的主动支撑结构及面形校正[J]. 光学精密工程, 2011,19(5): 1022-1029 DOI: 10.3788/OPE.20111905.1022.
CHEN Fu-lin, ZHANG Jing-xu, WU Xiao-xia, FAN Lei. Supporting structure of 620 mm thin primary mirror and its active surface correction[J]. Editorial Office of Optics and Precision Engineering, 2011,19(5): 1022-1029 DOI: 10.3788/OPE.20111905.1022.
为了提高大口径薄镜面望远镜主镜在不同俯仰角度的支撑面形精度
采用模态振型模式定标实时对主镜面形进行了主动校正。针对口径为620 mm
厚度为18 mm
底支撑采用36点主动支撑
侧支撑采用6点切向被动支撑的薄镜面主动支撑系统
分析了主镜自由振动时的模态振型;在进行主动校正前将其前10阶模态振型的RMS值归一化为1 000 nm
定标出相应的校正力;分析了不同俯仰角下主镜面形的变化
并采用最小二乘法用模态振形为底基函数拟合了主镜面变形
求解出主动校正力;对比校正面形和原始面形的关系
并在二次主动校正之后分析了拟合残差和校正残差的关系。最终校正结果显示
主镜竖直放置时
用最大2.23 N的校正力可将其面型RMS从27.62 nm校正到12.95 nm;主镜水平放置时
用最大0.59 N的校正力可将其面型RMS从7.68 nm校正到2.84 nm。得到的结果验证了采用模态振型校正主镜面型的可行性。
In order to improve the surface precision of a thin primary mirror in a large aperture telescope at different altitude angles
the active correction procedure based on vibration modal calibration was proposed. For a thin primary mirror with the 620 mm in diameter
18 mm in thickness and the axial munting in 36 points for the active support
the lateral mounting in 6 tangent points for the passive support
the free vibration mode of primary mirror was analyzed by finite element method and the first 10 vibration modes of the primary mirror were calibrated. Their RMS values were unified to 1 000 nm
also the calibration forces were calculated. Furthermore
the surface of the primary mirror with different altitude angles was analyzed
the deformations were fitted by the modal vibration mode using least square method
and the corrective forces were calculated. Finally
the corrected surface precision and initiative surface precision were compared
and the fitted surface precision and remanent surface precision were analyzed after the second active correction. Corrected results demonstrate that the deformation (RMS) of the primary mirror is corrected from 27.64 nm to 12.95 nm while it is vertically positioned by using the maximum corrective force of 2.23 N
and from 7.68 nm to 2.84 nm while horizontally positioned by using the maximum corrective force of 0.59 N. The simulation shows that the algorithm using modal vibration to actively correct the primary mirror surface is feasible.
RAY F B. Active optics technologyan overview [J]. SPIE, 1991,1532:188-206.[2] 于洋,曹根瑞. 主动光学反射镜面形的校正能力及其优化设计[J]. 北京理工大学学报 2003,23(2):229-233. YU Y, CAO G R. A study on the corrective capability and optimization of active mirrors[J]. Transact ions of Beijing Institute of Technology,2003,23(2)229-233. (in Chinese)[3] 曾春梅,郭培基,余景池. 0. 5 m超薄镜主动支撑面形校正及实验[J]. 光学 精密工程2010,18(3):570-578. ZENG C M, GUO P G, YU J C. Deformation and analysis on Correction of 0.5m ultra-thin mirror with active supports [J]. Opts. Precision Eng., 2010,18(3):570-578. (in Chinese)[4] 李宏壮,林旭东,刘欣悦,等. 400 mm薄镜面主动光学实验系统[J]. 光学 精密工程 2009,17(9):2077-2083. LI H Z, LIN X D, LIU X Y, et al.. Experiment system of 400mm thin mirror active optics [J]. Opts. Precision Eng., 2009,17(9):2077-2083.(in Chinese)[5] 王富国,杨洪波,李宏壮,等. 主动光学技术在薄镜面中的应用及算法研究[J]. 红外技术 2007,29(12):704-707. WANG F G, YANG H B, LI H Z, et al.. Application and algorithm research of active optics in thin mirrors [J].Infrared Technology 2007,29(12):704-707.(in Chinese)[6] 苏定强,崔向群. 主动光学新一代大望远镜的关键技术[J]. 天文学进展,1999,17(1) :1-14. SU D Q, CUI X Q. Active optics key technology of the new generation telescope [J]. Progress in Astronomy 1999,17(1):1-14.(in Chinese)[7] 闫勇,贾继强,金光. 新型轻质大口径空间反射镜支撑设计[J]. 光学 精密工程2008,16(8):1533-1539. YAN Y, JIA J Q, JIN G. Design of new type spaceborne lightweighted primary mirror support [J]. Opts. Precision Eng., 2008,16(8):1533-1539. (in Chinese)[8] 郭疆,何欣. 大口径空间遥感相机主反射镜支撑设计[J]. 光学 精密工程2008,16(9) :1642-1647. GUO J, HE X. Design of support for primary mirror of space remote sensing camera [J]. Opts. Precision Eng., 2008,16(9):1642-1647. (in Chinese)[9] 崔向群. 采用主动光学的大口径单块薄镜面支撑系统 . 南京:中科院南京紫金山天文台,1995. CUI X Q. Support System of Large Aperture Thin primary Mirror with Active Optics . Nanjing:Nanjing observatory, Chinese Academy of Sciences, 1995. (in Chinese)[10] NEOTHE L. Use of minimum-energy modes for modal-active optics corrections of thin meniscus mirrors [J]. Journal of Modern Optics 1991, 38(6):1043-1066.[11] SCHIPANI P, PEROTT F, AEROTTA L M. Active optics correction force for the VST 2.6m primary mirror [J]. SPIE, 2006 6273:62733A-1-12.[12] XAVIER B, JEAN L C, RENAUD M Y, et al.. Optimization methods aimed at designing a force control active mirror II : actuator pattern optimization [J]. SPIE, 1997,3126:366-377.[13] DOUGLAS R N, VICTOR K, JOHN A, et al.. Active tangent link system for transverse support of large thin meniscus mirrors[J]. SPIE 2007,6665 66650F-1-12. [14] MYUNG K C, RONALD S P, II K. Optimization of the ATST primary mirror support system[J]. SPIE, 2006,6273:62731E-1-12.
0
浏览量
349
下载量
14
CSCD
关联资源
相关文章
相关作者
相关机构