浏览全部资源
扫码关注微信
1. 南京理工大学 机械工程学院,江苏 南京,210094
2. 清华大学 机械工程系 北京,100084
收稿日期:2010-06-23,
修回日期:2010-09-14,
网络出版日期:2011-05-26,
纸质出版日期:2011-05-26
移动端阅览
侯丽雅, 王振琪, 章维一, 杨眉, 林峰. 金属微粉体脉冲输送的微特性实验[J]. 光学精密工程, 2011,19(5): 1030-1038
HOU Li-ya, WANG Zhen-qi, ZHANG Wei-yi, YANG Mei, LIN Feng. Experiments of micro characteristics of pulse-transfer for micro metallic powders[J]. Editorial Office of Optics and Precision Engineering, 2011,19(5): 1030-1038
侯丽雅, 王振琪, 章维一, 杨眉, 林峰. 金属微粉体脉冲输送的微特性实验[J]. 光学精密工程, 2011,19(5): 1030-1038 DOI: 10.3788/OPE.20111905.1030.
HOU Li-ya, WANG Zhen-qi, ZHANG Wei-yi, YANG Mei, LIN Feng. Experiments of micro characteristics of pulse-transfer for micro metallic powders[J]. Editorial Office of Optics and Precision Engineering, 2011,19(5): 1030-1038 DOI: 10.3788/OPE.20111905.1030.
采用以脉冲为微流动基本形态、脉冲当地惯性力为主动力的微流体数字化技术进行了金属微粉体(作为流体)脉冲输送微特性的实验
以解决激光金属粉体融覆沉积工艺中微粉体的精确稳定输送问题。建立了金属微粉体脉冲输送系统;以角形铬粉为实验材料
实验研究了驱动电压
U
、频率
f
、微喷嘴内径
d
、输送角度 等4种系统参量对铬粉脉冲输送微特性(粉体输送率和输送稳定性)的影响规律;以此规律为依据
确定和选择铬粉脉冲输送的系统参量
验证粉体微输送效果。实验显示
金属微粉体脉冲输送系统具有精确稳定的脉冲输送微特性
表征输送稳定性的变异系数
CV
<
7%
铬粉输送率
Q
可达每秒几十微克量级。结果表明:微流体数字化技术可实现金属微粉体的脉冲精确稳定输送;提出的研究方法可用于不同工程应用背景的微粉体脉冲输送的理论和实验研究。
To achieve the stable and precise transfer of micro metallic powders in the laser microcladding fabrication
the micro characteristics of micro metallic powder transfer
called pulse-transfer
are studied based on a new principle of microfluidic drive and control
in which microfluidic flows are driven by the pulsed local inertia force in micro channels. By using this technique
the flow of microfluidics can be controlled in pulse (or digital) demands. An experimental system of pulse-transfer for micro metallic powders is built to determine influencing rules of four system parameters
voltage amplitude
U
frequence
f
the inner diameter
d
of micro-nozzle
and the angle of transfer
on micro characteristics (powder transfer rate and stablity) of irregular micro chromium powders. The system parameters are optimized according to the influencing rules for transferring irregular micro chromium powders
and the effects of powder transfer are experimentally investigated. Experimental results indicate that the pulse-transfer system has excellent micro characteristics
and its powder transfer rate
Q
is within a few ten g per second and relative stadard deviation
CV
for evaluating transfer stability is smaller than 7%. The transfer of micro metallic powders with greater stability and precision is experimentally verified by using the technique of microfluidic digitalization
which demonstrates that the research method can be applied to experimental and theoretical studies of micro powder transfer in different fields of engineering.
COSTA L, VILAR R. Laser powder deposition [J]. Rapid Prototyping J., 2009,15(4):264-279.[2] CECILIA ARAKAKI, ALI GHADERI, et al.. Air mass balance for mass flow rate calculation in pneumatic conveying [J]. Powder Technology, 2010,202:62-70.[3] LIANG C, CHEN X P, ZHAO C S, et al.. Flow characteristics and dynamic behavior of dense-phase pneumatic conveying conveying of pulverized coal with variable moisture content at high pressure [J]. Korean J. Chem. Eng., 2009,26(3):867-873.[4] LIU Z M, DU B, ZHAO W L, et al.. Effect of characterization of powder on particle velocity in dense-phase pneumatic conveying [J]. Journal of Physics: Conference Series, 2009, 147 012068.[5] SATORU WATANO. Mechanism and control of electrification in pneumatic conveying of powders [J]. Chemical Engineering Science, 2006,61(7):2271-2278.[6] R CK M, MORGENEYER M, SCHWEDES J, et al.. Steady state flow of cohesive and non-cohesive powders, Investigations in experiment and simulation [J]. Granular Matter., 2008,10:285-293.[7] TAKANO T, TOMIKAWA Y. Excitation of a progressive wave in a lossy ultrasonic transmission line and an application to a powder-feeding device [J]. Smart Mater Struct., 1998,7:417-421.[8] LU X S, YANG S F, EVANS J R G. Dose uniformity of fine powders in ultrasonic microfeeding [J]. Powder Technology, 2007,175:63-72.[9] LU X S, YANG S F, EVANS J R G. Microfeeding with different ultrasonic nozzle designs [J]. Ultrasonics, 2009,49(6-7):514-521.[10] K HNEA U, FRITSCHING U. Dosage of highly disperse powders by ultrasound agitated tube modules [J]. Powder Technology, 2005,155:117-124.[11] MRACEK M, WALLASCHEK J. A system for powder transport based on piezoelectrically excited ultrasonic progressive waves [J]. Materials Chemistry and Physics, 2005,90:378-380.[12] 姜斌,刘晓论,杨志刚,等. 垂直驱动型超声波送料器的研究[J]. 光学 精密工程,2008,16(6):1083-1086. JIANG B, LIU X L, YANG ZH G, et al.. Study on vertical drive ultrasonic feeder [J]. Opt. Precision Eng., 2008,16(6):1083-1086. ( in Chinese)[13] 何 勍 ,王宏祥.压电式多振子驻波型物料输送装置 . 中国:200610046279.2,2006-09-06. HE Q ,WANG H X. Standing wave type piezoelectric multi-vibrators material transmission device . CN: 0610046279.2, 2006-09-06. (in Chinese)[14] MATSUSAKA S, URAKAWA M, MASUDA H. Micro-feeding of fine powders using a capillary tube with ultrasonic vibration [J]. Advanced Powder Technology, 1995,6(4):283-293.[15] LI X CH, CHOI H, YANG Y. Micro rapid prototyping system for micro components [J]. Thim Solid Films, 2002,420-421: 515-523.[16] YANG SH F, EVANS J R G. A multi-component powder dispensing system for three dimensional functional gradients [J]. Materials Science and Engineering:A, 2004(379):351359.[17] 章维一,侯丽雅.影响流体流动的方法及其装置和应用 . 中国:03152948.8,2004-08-25. ZHANG W Y, HOU L Y. Method and device interfering fluidic flow and their applications . CN: 03152948.8,2004-08-25. (in Chinese)[18] 章维一,侯丽雅. 微流体数字化的科学与技术问题(I):概念、方法和效果[J]. 科技导报,2005,23(8):4-9. ZHANG W Y, HOU L Y. Scientific and technological problems of digitalization of microfluids(Part I): concepts, methods and results [J]. Science & Technology Review, 2005,23(8):4-9. (in Chinese)[19] 章维一,侯丽雅. 微流体数字化的科学与技术问题(II):物质数字化及物质能量信息统一数字化概念研究[J]. 科技导报,2006,24(3):41-47. ZHANG W Y, HOU L Y. Scientific and technological problems of digitalization of microfluids(Part Ⅱ): Conceptual study of digitalization of matter and integrated digitalization of matter-energy-information [J]. Science & Technology Review, 2006,24(3):41-47. (in Chinese)[20] 科学技术部基础研究司科技部高技术研究发展中心. 新微流体数字化技术可使液滴量分辨率达到飞升级[J]. 基础科学研究快报,2004,4(150):6-7. HTRDC, MOST, P R CHINA. Single droplet is obtained in femtoliter scale by new microfluids digitalization technology[J]. Basic Scientific Research Express, 2004(4):6-7. (in Chinese)[21] 张晓乐,侯丽雅,章维一. 数字化微喷射用直列微喷嘴制作工艺[J]. 光学 精密工程,2008,16(11):2221-2227. ZHANG X L, HOU L Y, ZHANG W Y. Fabrication of in-line micropipette for digital micro-jetting experiment [J]. Opt. Precision Eng., 2008,16(11):2221-2227. ( in Chinese)[22] 耿鑫,侯丽雅,章维一. 微流体数字化喷点技术的实现[J]. 光学 精密工程,2009,17(8):1902-1907. GENG X, HOU L Y, ZHANG W Y. Implementation of digital dispensing technology for microfluids [J]. Opt. Precision Eng., 2009,17(8):1902-1907. ( in Chinese)[23] 穆莉莉,侯丽雅,章维一. 基于微流体数字化技术的流式细胞术的设计[J]. 化工学报,2010,61(4):949-954. MU L L, HOU L Y, ZHANG W Y. Design of flow cytometry based on microfluids digitalization technology [J]. Journal of Chemical Industry and Engineering, 2010,61(4):949-954. (in Chinese)[24] 林峰,吴涛,齐海波,等. 基于粉末精确喷射的TC4粉末微熔覆沉积制造初步研究 . 第13届全国特种加工学术会议论文集,南昌:中国机械工程学会特种加工分会,2009:546-552. LIN F ,WU T, QI H B, et al.. Study on TC4 powder laser micro cladding deposition manufacturin by powder precise jet . Proceedings of the 13th International Conference on Non Traditional Machining, Nanchang, P. R. China: Non Traditional Machining Branch of CMES, 2009:546-552. (in Chinese)[25] 吴涛.基于数字化喷射的高精度金属熔覆沉积制造技术研究 . 清华大学本科综合训练论文,2009. WU T. Study on high precise metal cladding deposition manufacturing by powder digital jet . Beijing: Tsinghua University, 2009. (in Chinese)
0
浏览量
480
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构