浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2. 中国科学院 研究生院,北京 100039
收稿日期:2010-08-25,
修回日期:2010-10-27,
网络出版日期:2011-05-26,
纸质出版日期:2011-05-26
移动端阅览
陈茂胜, 金光, 安源, 武俊峰, 张刘, 曲宏松. 采用自适应PI控制的单框架控制力矩陀螺角动量飞轮系统的设计[J]. 光学精密工程, 2011,19(5): 1075-1081
CHEN Mao-sheng, JIN Guang, AN Yuan, WU Jun-feng, ZHANG Liu, QU Hong-song. Design of angular momentum wheel in SGCMG using adaptive compensation PI control[J]. Editorial Office of Optics and Precision Engineering, 2011,19(5): 1075-1081
陈茂胜, 金光, 安源, 武俊峰, 张刘, 曲宏松. 采用自适应PI控制的单框架控制力矩陀螺角动量飞轮系统的设计[J]. 光学精密工程, 2011,19(5): 1075-1081 DOI: 10.3788/OPE.20111905.1075.
CHEN Mao-sheng, JIN Guang, AN Yuan, WU Jun-feng, ZHANG Liu, QU Hong-song. Design of angular momentum wheel in SGCMG using adaptive compensation PI control[J]. Editorial Office of Optics and Precision Engineering, 2011,19(5): 1075-1081 DOI: 10.3788/OPE.20111905.1075.
设计了单框架控制力矩陀螺中的角动量飞轮分系统以提高卫星姿态控制精度。首先
从理论上分析了角动量飞轮的角速度波动对单框架控制力矩陀螺输出力矩的影响
得到当期望转速为5 000 r/min且力矩波动<0.002 Nm时
角速度波动应小于5 r/min的结论。然后
采用无刷直流电机驱动角动量飞轮
利用FPGA实现控制驱动电路
并设计自适应PI控制律以跟踪期望角速度。实验结果显示:从静止状态跟踪5 000 r/min期望转速
达到稳定状态耗时25 s
超调量<15 r/min
稳态精度为2 r/min。通过对上位机实时采集转速数据进行分析
验证了动量飞轮分系统设计的合理性
表明其能够满足单框架控制力矩陀螺对角动量飞轮分系统的设计要求
降低了角速度波动对输出力矩的影响
进而能够提高卫星对地观测时的平台控制精度。
The angular momentum flywheel subsystem of a Single Gimbal Control Moment Gyro(SGCMG) was designed to improve the attitude control accuray of satellites. Firstly
the impact of angular velocity fluctuations on the output torque of SGCMG was analyzed in theory. The conclusion suggests that when the expected speed is 5 000 r/min and the torque fluctuation is less than 0.002 Nm
the angular velocity fluctuations should be less than 5 r/min. Then
the angular momentum flywheel was driven by a Brushless Direct Current Motor(BLDCM)
the control driver circuit was designed by a Field Programming Gate Array(FPGA)
and an adaptive compensation PI control strategy was established to track the expected angular velocity. Test and experiments show that it takes 25 s to reach a steady-state from stillness to 5 000 r/min
the overshoot is less than 15 r/min and the steady-state accuracy is 2 r/min. Analysis of the data collected real-time by PC shows the rationality of the subsystem and indicates that the angular moment wheel designed satisfies the requirement of the SGCMG
reduces the impact of angular velocity fluctuations on the output torque of SGCMG
and improves the platform control accuracy of satellites.
戴路,金光,陈涛. 基于VSCMG的卫星姿态控制仿真系统[J]. 光学 精密工程,2008,16(8):1546-1553. DAI L, JIN G, CHEN T. Satellite attitude ontrol simulation test bed based on VSCMG [J]. Opt. Precision Eng., 2008,16(8):1546-1553. (in Chinese)[2] 徐开,金光,陈娟,等. 敏捷小卫星姿态机动切换算法[J]. 光学精密工程,2008,16(8):1528-1532. XU K, JIN G, CHEN J, et al.. Switch algorithm for quick small satellite attitude maneuver [J]. Opt. Precision Eng., 2008,16(8):1528-1532. (in Chinese)[3] 郭前刚,崔兵兵. 基于DSP及轴角数字转换器的直流无刷电机控制系统设计[J]. 电机与控制应用,2008,35(1):17-19. GUO Q G, CUI B B. Digital signal processor and resolver-to-angle digital converter [J]. Electric Machines & Control Application, 2008,35(1):17-19. (in Chinese)[4] 武俊峰,吴一辉,安静,等. 姿控飞轮变结构变速积分控制及实现[J]. 光学 精密工程,2010,18(1):149-155. WU J F, WU Y H, AN J, et al.. Variable structure changing integration rate control and implement for flywheels [J]. Opt. Precision Eng., 2009,17(5):149-155 . (in Chinese)[5] 郭雪梅,贾宏光,冯长友. 直流无刷电机位置跟踪的模糊PID控制[J]. 长春理工大学学报(自然科学版),2008,31(1):97-101. GUO X M, JIA H G, FENG CH Y. Fuzzy PID control of brushless DC motor position tracking [J]. Journal of Changchun University of Science and Technology(Natural Science Edition), 2008,31(1):97-101 . (in Chinese)[6] 晁盛远,王凯,刘富勇. 直流无刷电机系统的建模与仿真[J]. 计算技术与自动化,2008,27(2):39-43. CHAO SH Y, WANG K, LIU F Y. Modeling and simulation of brushless DC motor system [J]. Computing Technology and Automation,2008, 27(2):39-43. (in Chinese)[7] 马士学. 变负载直流电机的离散时间自适应控制的研究与设计[J]. 光学 精密工程,1993,1(5):105-108. MA SH X. Adaptive control of DC motor with great changed load in discrete time domain [J]. Opt. Precision Eng., 1993,1(5):105-108. (in Chinese)[8] 郑浩鑫,郑宾,殷云华. 模糊PID数字控制器系统的仿真与设计[J]. 机械工程与自动化,2009(2):121-123. ZHENG H X, ZHENG B, YIN Y H. Simulation and design of numeral fuzzy PID controller system [J]. Mechanical Engineering & Automation, 2009(2):121-123.(in Chinese)[9] 李海涛,房建成. 自适应角速度估计器在磁悬浮控制力矩陀螺框架伺服系统中的应用[J]. 光学精密工程,2008,16(1):98-102. LI H T, FANG J CH. Application of adaptive angle-rate estimator to gimbal of MGCMG [J]. Opt. Precision Eng., 2008,16(1):98-102. (in Chinese)[10] 刘岩,李友一,陈占军,等. 模型参考自适应滑模控制方法在前向像移补偿中的应用[J]. 光学 精密工程,2007,15(6):983-987. LIU Y, LI Y Y, CHEN ZH J, et al.. Application of model reference adaptive sliding mode control to forward compensation system in camera [J]. Opt. Precision Eng., 2007,15(6):983-987. (in Chinese)[11] 陈娟. 自适应低速摩擦补偿[J]. 量子电子学报,2001,18:89-91. CHEN J. Adaptive low speed friction compensation [J]. Chinese Journal of Quantum Electronics, 2001,18:89-91. (in Chinese)[12] ARMSTRONG B, DUPONT P, CANUDES W C. A survey of models analysis tools and compensation methods for the control of machines with friction [J]. Automatica, 1994,30(7):1083-1138.
0
浏览量
561
下载量
10
CSCD
关联资源
相关文章
相关作者
相关机构