浏览全部资源
扫码关注微信
1. 北京航空航天大学 仪器科学与光电工程学院,北京100191
2. 北京航空航天大学 新型惯性仪表与导航系统技术国防重点学科实验室,北京 100191
收稿日期:2010-06-25,
修回日期:2010-08-06,
网络出版日期:2011-05-26,
纸质出版日期:2011-05-26
移动端阅览
韩邦成, 马纪军, 李海涛. 谐波减速器的非线性摩擦建模及补偿[J]. 光学精密工程, 2011,19(5): 1095-1103
HAN Bang-cheng, MA Ji-jun, LI Hai-tao. Modeling and compensation of nonlinear friction in harmonic driver[J]. Editorial Office of Optics and Precision Engineering, 2011,19(5): 1095-1103
韩邦成, 马纪军, 李海涛. 谐波减速器的非线性摩擦建模及补偿[J]. 光学精密工程, 2011,19(5): 1095-1103 DOI: 10.3788/OPE.20111905.1095.
HAN Bang-cheng, MA Ji-jun, LI Hai-tao. Modeling and compensation of nonlinear friction in harmonic driver[J]. Editorial Office of Optics and Precision Engineering, 2011,19(5): 1095-1103 DOI: 10.3788/OPE.20111905.1095.
针对带有谐波减速器的双框架控制力矩陀螺框架伺服系统中的非线性摩擦问题
提出了非线性摩擦建模及补偿方法。首先
根据框架伺服系统数学模型导出摩擦力矩与角加速度和电机电流的关系;然后
通过光电码盘测得的角位置计算角速率并设计估计器来估计电机端和负载端的角加速度
利用采样电流和估计的角加速度计算摩擦力矩
建立库伦+粘滞+Stribeck摩擦模型;最后
设计基于摩擦模型的前馈补偿控制器抑制非线性摩擦以提高系统控制精度。实验结果显示
与传统PID控制方法相比
伺服系统加入基于摩擦模型的前馈补偿之后
角速率误差曲线峰峰值减小28.2%
角速率误差均方值减小25.7%;表明通过基于摩擦模型的前馈补偿可以有效抑制非线性摩擦引起的角速率误差
提高伺服系统的控制精度。
To overcome the influence of the nonlinear friction on the gimbal servo-system of a double gimbal control moment gyro with harmonic drivers
the methods of modeling and compensation of the nonlinear friction are proposed. Firstly
the relationships between the nonlinear friction torque and the angle acceleration of a gimbal motor and the friction torque and the current of the gimbal motor are deduced according to the mathematical model of gimbal servo-system. Then
based on the angle position measured by encoders
the angle velocities of the motor and loader sides are calculated and an angle acceleration estimator is designed to estimate the angle accelerations of the motor and loader sides. Furthermore
the nonlinear friction torque is calculated and modeled as the Coulomb
viscous and Stribeck friction model. Finally
a feedforward compensation controller based on the model is designed to restrain the nonlinear friction and to improve the control precision. Experimental results indicate that compared with those of the conventional PID control method
the peak-peak value of angle velocity error curve has decreased by 28.2% and the mean squared error decreased by 25.7% after the feedforward compensation controller is added. It concludes that the feedforward compensation controller decreases the angle velocity error caused by nonlinear friction and improves the control precision of the servo-system.
李海涛,房建成. 自适应角速度估计器在磁悬浮控制力矩陀螺框架伺服系统中的应用 [J]. 光学 精密工程, 2008,16(1):97-102. LI H T, FANG J CH. Application of adaptive angle-rate estimator to gimbal of MGCMG [J]. Opt. Precision Eng., 2008,16(1):97-102. (in Chinese)[2] 韩邦成,刘强. 基于自锁原理的磁悬浮飞轮电磁锁紧机构 [J]. 光学 精密工程, 2009,17(10):2456-2464. HAN B CH, LIU Q. Electromagnetic locking device based on self-locking for magnetic suspended flywheel [J]. Opt. Precision Eng.,2009,17(10):2456-2464. (in Chinese)[3] 房建成,徐向波,魏彤. 采用线性求角的旋变轴角解码与激磁系统 [J]. 光学 精密工程, 2009,17(4):794-800. FANG J CH, XU X B, WEI T. Resolver excitation and resolver-to-digital conversion system based on linear angle calculation [J]. Opt. Precision Eng., 2009,17(4):794-800. (in Chinese)[4] 李海涛,房建成,韩邦成,等. 一种双框架磁悬浮控制力矩陀螺框架伺服系统扰动抑制方法研究 [J]. 宇航学报, 2009,30(6):2199-2205. LI H T, FANG J CH, HANG B CH, et al.. Study on the system disturbance rejection method used in the gimbal servo system of double gimbal magnetically suspended Control Moment Gyro [J]. Journal of Astronautics, 2009,30(6):2199-2205. (in Chinese)[5] TAGHIRADT H D, BELANGERT P R. An experimental study on modeling and identification of harmonic drive systems . IEEE Proceedings of the 35th Conference on Decision and Control, Kobe, Japan. December, 1996:4725-4730.[6] TUTTLE T D, SEERING W P. A nonlinear model of a harmonic drive gear transmission [J]. IEEE Transaction on Robotics and Automation, 1996,12(3):368-374.[7] GANDHI P S., GHORBEL F H. Modeling, identification and compensation of friction in harmonic drives . Proceedings of the 41th IEEE Conference on Decision and Control, Las Vegas, Nevada USA, December, 2002:160-166.[8] LU Y SH, HWANG CH SH. Tracking control of a harmonic drive actuator with sliding-mode disturbance observers . IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Suntec Convention and Exhibition Center, Singapore, 2009, 1798-1803.[9] 王建军,杨宏源,白会彦. 谐波齿轮传动在伺服机构中的应用与计算[J]. 战术导弹控制技术, 2003,1:42-53. WANG J J, YANG H Y, BAI H Y. Computation and application of harmonic gear drive in a servo-system [J]. Control Technology of Tactical Missile, 2003,1:42-53. (in Chinese)[10] TAGHIRADT H D, BELANGERT P R. An experimental study on modeling and identification of harmonic drive systems . IEEE Proceedings of the 35th Conference on Decision and Control, Kobe, Japan. December, 1996:4725-4730.[11] 刘金琨. 先进PID控制Matlab仿真 [M]. 第二版. 北京:电子工业出版社,2004.9. LIU J K. Matlab Simulation of Advanced PID Control [M]. Second ed. Beijing:Publishing House of Electronics Industry, September, 2004.9. (in Chinese)[12] MA J, YU Y. Angular acceleration estimator for a flight motion simulator: design and performance comparison . IEEE 17th Mediterranean Conference on Control & Automation, Makedonia Palace, Thessaloniki, Greece, 2009:606-609.[13] JAMALUDIN Z, BRUSSEL H V, JAN S. Friction compensation of an XY feed table using friction-model-based feedforward and an inverse-model-based disturbance observer [J]. IEEE Transactions on Industrial Electronics, 2009,56(10):3848-3853.[14] L RINC M, BLAL. Modeling, identification, and compensation of stick-slip friction [J]. IEEE Transactions on Industrial Electronics, 2007,54(1):511-521.[15] TSAI M C, CHIU I F, CHENG M Y. Design and implementation of command and friction feedforward control for CNC motion controllers [J]. IEE Proc.-Control Theory Appl, 2004,151(1):13-20.
0
浏览量
353
下载量
18
CSCD
关联资源
相关文章
相关作者
相关机构