浏览全部资源
扫码关注微信
上海大学 机电工程与自动化学院,上海 200072
收稿日期:2010-07-01,
修回日期:2010-10-26,
网络出版日期:2011-05-26,
纸质出版日期:2011-05-26
移动端阅览
屠大维, 江济良. 改进的光流运动图像分析方法及其应用[J]. 光学精密工程, 2011,19(5): 1159-1164
TU Da-wei, JIANG Ji-liang. Improved algorithm for motion image analysis based on optical flow and its application[J]. Editorial Office of Optics and Precision Engineering, 2011,19(5): 1159-1164
屠大维, 江济良. 改进的光流运动图像分析方法及其应用[J]. 光学精密工程, 2011,19(5): 1159-1164 DOI: 10.3788/OPE.20111905.1159.
TU Da-wei, JIANG Ji-liang. Improved algorithm for motion image analysis based on optical flow and its application[J]. Editorial Office of Optics and Precision Engineering, 2011,19(5): 1159-1164 DOI: 10.3788/OPE.20111905.1159.
针对传统光流运动图像分析方法运动估计精度低且易受各种干扰等缺点
提出一种基于梯度阈值的五置信点约束的改进光流算法。该方法采用五置信点加权法处理像素时间和空间梯度值
减小了单个像素受噪声的影响。对基本光流约束方程进行了梯度阈值处理
剔除了光流场中不利于运动估计的干扰数据
提高了运动图像的运动估计精度。实验分别采用传统算法和改进算法对全局和局部运动场景的视频图像序列进行光流计算
结果表明
该改进光流算法运动估计精度高、抗干扰性强
能准确地反映场景全局运动及场景中的局部运动
比传统的光流算法具有更好的鲁棒性和收敛性
且运算时间缩短了1/3。该光流算法在行车环境传感、交通流分析中具有潜在的应用价值。
For the problems of low motion estimation accuracy and easy to be affected by various interferences such as object surface structure change
background light disturbance etc
when solving the basic optical flow constraint equation with the traditional algorithm
an improved optical flow algorithm with five-confidence-point restraint based on gradient threshold has been put forward in this paper. The five-confidence-point weighted method was applied to calculate the time and space gradient value of each image pixel
reducing noise effect on it
and gradient and gradient threshold was adopted to process the basic optical flow constraint equation
so that the interference data which will disturb the motion estimation in the optical flow field were eliminated
and the motion estimation accuracy of motion image was improved. The experiments have been carried out by the traditional algorithm and the improved one respectively for global and local movements. The contrastive analysis shows that this improved optical flow algorithm
which can figure both scene global motion and local motion in the scene
has the advantages of not only a high accuracy of motion estimation and a strong anti-interference
but also a better robustness and convergence compared with the traditional one
as well as one-third of computaion time shortened. It can be expected that this algorithm will be of potential application in driving environment sensing and traffic flow analysis.
王晓卫,宁 固. 一种改进的基于光流的运动目标的检测算法[J]. 武汉大学学报信息科学版,2003,28(3):351-353. WANG X W, NING G. Modified object tracking algorithm based on optical flow [J]. Geomatics and Information Science of Wuhan University, 2003,28(3):351-353. (in Chinese)[2] 邓志燕,陈炽坤. 利用外极线约束的图像匹配新算法[J]. 工程图学学报,2009(5):104-107. DENG ZH Y, CHEN ZH K. An Image matching algorithm based on epipolar line restriction [J]. Journal of Engineering Graphics, 2009(5):104-107. (in Chinese)[3] 杨小冈,曹菲,缪栋,等. 基于相似度比较的图像灰度匹配算法研究[J]. 系统工程与电子技术,2005,27(5):918-921. YANG X G, CAO F, MIAO D, et al.. Study on the image grayscale matching algorithm based on similarity measures[J]. Systems Engineering and Electronics, 2005,27(5):918-921.(in Chinese)[4] 王会峰,刘上乾,汪大宝,等. 基于序列图像特征配准的摄像机旋转补偿算法[J]. 光学 精密工程,2008,16(7):1330-1334. WANG H F,LIU SH Q,WANG D B, et al.. Video camera rotation compensation algorithm based on feature matching of sequence image frames[J]. Opt. Precision Eng., 2008,16(7):1330-1334. (in Chinese)[5] 李玲玲,李翠华,曾晓明,等. 基于Harris-Affine和SIFT特征匹配的图像自动配准[J]. 华中科技大学学报,2008,36(8):13-16. LI L L,LI C H, ZENG X M, et al.. An automatic image registration method based on SIFT and Harris-Affine features matching [J]. Huazhong Univ. of Sci. & Tech, 2008,36(8):13-16. (in Chinese)[6] 姜永林,屈桢深,王常虹. 基于纹理及统计特征的视频背景提取[J]. 光学 精密工程,2008,16(1):172-177. JIANG Y L,QU Z S,WANG C H. Video background extraction based on textural and statistical features[J]. Opt. Precision Eng., 2008,16(1):172-177. (in Chinese)[7] 孙辉,赵红颖,熊经武,等. 基于光流模型的图像运动估计方法[J]. 光学 精密工程,2002,10(5):443-447. SUN H, ZHAO H Y, XIONG J W, et al.. Method of estimating image motion based on the optical flow model [J]. Opt. Precision Eng., 2002,10(5):443-447.(in Chinese)[8] 陶陵. 基于光流技术的图像信息获取 . 武汉:华中科技大学, 2005. TAO L. Gaining Image Information based on optical flow technology . Wuhan: Huazhong University, 2005. (in Chinese)[9] TEKALP A M. Digital Video Processing [M]. Indiana: Prentice Hall PTR, 1995.[10] BERTHOLD K, HORN P, BRIAN G. Direct methods for recovering motion [J]. International Journal of Computer Vision , 1988(2):51 - 76.[11] TIMONER S J, FREEMAN D M. Multi-image gradient-based algorithms for motion estimation [J]. Opt. Eng., 2001,40(9):2003-2016.[12] 黄士科,陶琳,张天序. 一种改进的基于光流的运动目标检测方法[J]. 华中科技大学学报,2005,33(5):39-41. HUANG SH K, TAO L, ZHANG T X. An improved algorithm of moving object detection based on optical flow [J]. Huazhong Univ. of Sci. & Tech, 2005,33(5):39-41. (in Chinese)[13] 邓辉斌,熊邦书,欧巧凤. 基于隔帧差分区域光流法的运动目标检测[J]. 光电技术应用,2009,30(2):300-304. DENG H B, XIONG B SH, OU Q F. Moving targets detection based on regional optical flow of discontinuous frame [J]. Semiconductor optoelectronics,2009,30(2):300-304.
0
浏览量
240
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构