浏览全部资源
扫码关注微信
1. 扬州大学 机械工程学院,江苏 扬州,225127
2. 南京航空航天大学 智能材料与结构研究所,江苏 南京,210016
收稿日期:2010-08-16,
修回日期:2010-09-29,
网络出版日期:2011-06-25,
纸质出版日期:2011-06-25
移动端阅览
边义祥, 裘进浩. 半电极含金属芯压电纤维的弯曲振动模型[J]. 光学精密工程, 2011,19(6): 1298-1305
BIAN Yi-xiang, QIU Jinhao. Bending vibration model for half coated metal core piezoelectric fiber[J]. Editorial Office of Optics and Precision Engineering, 2011,19(6): 1298-1305
边义祥, 裘进浩. 半电极含金属芯压电纤维的弯曲振动模型[J]. 光学精密工程, 2011,19(6): 1298-1305 DOI: 10.3788/OPE.20111906.1298.
BIAN Yi-xiang, QIU Jinhao. Bending vibration model for half coated metal core piezoelectric fiber[J]. Editorial Office of Optics and Precision Engineering, 2011,19(6): 1298-1305 DOI: 10.3788/OPE.20111906.1298.
建立了悬臂梁结构的半电极含金属芯压电纤维(HMPF)的弯曲振动模型和动态测试模型。基于外加电压时的等效弯矩
推导了悬臂梁结构的HMPF的弯曲振动模型;用第一类压电方程
推导了外加简谐激励电压时
HMPF的表面电位移、电荷和导纳
建立了动态测试模型
通过测量共振频率
f
r
、反共振频率
f
a
和低频电容
C
LF
得到HMPF的弹性柔顺系数
s
11
E
、机电耦合系数
k
31
、介电常数
33
T
和压电常数
d
31
。叙述了弯曲振动模型和动态测量模型的建立过程和测试步骤
测试了3根HMPF样品
得到各参数的平均值
s
11
E
为16.85610
-12
Pa
-1
k
31
为0.179
33
T
为2 251
d
31
为-103.621 pC/N。测试结果表明所建立的动态测试方法可以快速、准确地测量HMPF的主要参数。
A bending vibration model and a dynamic measuring model for a Half Coated Metal Core Piezoelectric Fiber (HMPF) were established. On the basis of the equivalent bending moment from an applying voltage
the bend vibration model of HMPF for a cantilever structure was deduced. According to the first piezoelectric equation
the surface electric displacements
electric charges and the admittances of the HMPF were derived when the resonant exciting voltage was applied. Then
the dynamic measuring model was established to measure the resonant frequencies
anti-resonant frequencies and the low frequency capacitances and to obtain the main parameters
elastic coefficients
s
11
E
electromechanical coupling factors
k
31
dielectric constants
33
T
and piezoelectric coefficients
d
31
. Three kinds of samples for HMPFs were measured
and their average values are elastic coefficient in 16.856 10
-12
Pa
-1
electromechanical coupling factor in 0.179
dielectric constant in 2 251 and piezoelectric coefficient in -103.621 pC/N. The theoretical simulation and experimental results show that this method is accurate and available.
TANI J, TAKAGI K, QIU J. Intelligent material systems:application of functional materials[J]. Applied Mechanics Reviews, ASME, 1998,51(8):505-521.[2] SEBALD G,QIU J, GUYOMAR D, et al.. Modeling and characterization of piezoelectric fibers with metal core[J]. Japanese Journal of Applied Physics, 2005,44(8):6156-6163.[3] QIU J, YAMADA N, TANI J, et al.. Fabrication of piezoelectric fibers with metal core . Proc. Of SPIE's 10th International Symposium on Smart Structures and Materials, Active Materials: Behavior and Mechanics, D. C. Lagoudas, Ed., San Diedo, CA., 2003,555053:475-483.[4] SATO H, SEKIYA T, NAGAMINE M. Design of the metal-core piezoelectric fiber[J]. SPIE, 2004,5390:97-103.[5] SEBALD G,QIU J, GUYOMAR D. Modelling the lateral resonance mode of piezoelectric fibers with metal core[J]. Journal of Physics D: Applied Physics J. Phys.,2005:383733-3740.[6] SEBALD G, BENAYAD A, QIU J, et al.. Electomechanical characterization of 0.55Pb(NiNb)O -0.45Pb(Zr0.3Ti0.7)O3 fibers with Pt core[J]. Journal of Applied Physics, 2006,100:054106-1-6.[7] SATO H, NAGAMINE M. Mechanical properties of metal-core piezoelectric fiber[J]. SPIE,2005,5764:623-629.[8] TAKAGI K, SATO H, SAIGO M. Robust vibration control of the metal-core assisted piezoelectric fiber embedded in CFRP composite[J]. SPIE,2004,5383:376-385.[9] TAKAGI K, SATO H, SAIGO M, Damage detection and gain-scheduled control of CFRP smart board mounting the metal core assisted piezoelectric fiber[J]. SPIE, 2005,5757:471-480.[10] ASKARI D, ASANUMA H, MEHRDAD N, et al.. A comparative study on macro-fiber composites and active fiber composites with metal-core piezoelectric actruators/sensors[J]. SPIE,2006,6170:6170-1-6170-12.[11] SATO H, TAKAGI K, SHIMOJO Y. Fabrication and vibration suppression behavior of metal core-piezoelectric fibers in CFRP composite . Proc. of Transducing Materials and Devices, Brugge, Belgium, 2003,4946:80-87.[12] BIAN Y, QIU J, WANG X. Constitutive equations of metal-core piezoelectric fibers[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2008,25(3):169-175.[13] 边义祥,裘进浩,王鑫伟,等. 含金属芯压电纤维的传感特性研究[J]. 振动、测试与诊断,2010,30(1):28-32. BIAN Y, QIU J, WANG X, et al.. Performance analysis of sensor using metal core pizoelectric fiber[J]. Journal of Vibration, Measurement & Diagnosis, 2008, 25(3):169-175. (in Chinese)[14] QIU J, PARK M, HOSHI D, et al.. The research of the development of the air flow sensor using the piezoelectric fiber with Pt core[J]. Japan AEM,2004,12(4):299-303.[15] BIAN Y, QIU J, WANG X. The constitutive equations of half coated metal core piezoelectric fiber[J]. International Journal of Applied Electromagnetics and Mechanics, 2009,29(1):47-64.[16] SMITS J G. Dynamic admittance matrix of piezoelectric cantilever bimorphs[J]. Journal of Microelectromechanical Systems. 1994,3(3):105-112.[17] SUN D, TONG L, SATYA N. Effects of piezoelectric sensor/actuator debonding on vibration control of smart beams[J]. International Journal of Solids and Structures,2001,38:9033-9051.
0
浏览量
265
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构