浏览全部资源
扫码关注微信
1. 南京航空航天大学 精密驱动研究所,江苏 南京,210016
2. 北京联合大学 机电工程学院 北京,100020
收稿日期:2010-06-12,
修回日期:2010-09-29,
网络出版日期:2011-06-25,
纸质出版日期:2011-06-25
移动端阅览
胡笑奇, 张建辉, 黄毅, 夏齐霄, 黄卫清. 仿尾鳍式变截面摆动振子无阀压电叠堆泵的结构设计[J]. 光学精密工程, 2011,19(6): 1334-1343
HU Xiao-qi, ZHANG Jian-hui, HUANG Yi, XIA Qi-xiao, HUANG Wei-qing. Structure design of caudal-fin-type piezoelectric-stack pump with variable cross-section oscillating vibrator[J]. Editorial Office of Optics and Precision Engineering, 2011,19(6): 1334-1343
胡笑奇, 张建辉, 黄毅, 夏齐霄, 黄卫清. 仿尾鳍式变截面摆动振子无阀压电叠堆泵的结构设计[J]. 光学精密工程, 2011,19(6): 1334-1343 DOI: 10.3788/OPE.20111906.1334.
HU Xiao-qi, ZHANG Jian-hui, HUANG Yi, XIA Qi-xiao, HUANG Wei-qing. Structure design of caudal-fin-type piezoelectric-stack pump with variable cross-section oscillating vibrator[J]. Editorial Office of Optics and Precision Engineering, 2011,19(6): 1334-1343 DOI: 10.3788/OPE.20111906.1334.
受具有高速巡游速度的金枪鱼的启发
提出了一种微脉动、大流量、仿尾鳍变截面振子无阀压电泵。以压电叠堆为激励源
设计了仿尾鳍变截面振子
实验验证了振子的二阶弯振和金枪鱼高速巡游的摆动模式一致。利用有限元分析软件ANSYS分析了振子的模态振型
提出了模态分离更好的Y型振子。为避免压电叠堆受力不均匀而受到损坏
采用钢球和隔离块作为压电叠堆传递力和振动的媒介
实现了压电叠堆和泵腔内液体的干湿分离。设计了二级杠杆/柔铰机构
放大了振子端部柔性叶片摆动幅度。最后
研制了样机
并进行了不同驱动频率下的仿尾鳍式变截面摆动振子无阀压电叠堆泵的流量测量
结果表明
在80 V正弦电压的激励下
激励频率为1 350 Hz时泵的流量达到峰值(400 ml/min)。本设计方案能够有效地提高泵的性能
满足工程实践中对大流量无阀压电泵的需求。
Based on a variable cross-section oscillating vibrator
a caudal-fin-type piezoelectric-stack pump with a high flow rate was proposed. Firstly
the caudal-fin-type variable cross-section oscillating vibrator
whose second order bending modal agrees with tuna's high cruise swing mode was designed by using the piezoelectric-stack as an excitation source. Then
FEM software ANSYS was used to analyze the modal shape of the vibrator and a better Y vibrator was presented.To prevent the uneven distribution of loading applied to the piezoelectric-stack and to avoid the damage of piezoelectric-stack
a steel ball and an isolation block were used as the media of forces and vibration to separate the piezoelectric-stack from the water in a chamber.Furthermore
the mechanism of two-stage level/flexure-hinge was designed to amplify the tip amplitude of the vibrator. Finally
a prototype was designed and fabricated
and the experiments on measuring the flow rate varying with frequencies were performed. The experiment shows that the flow rate of the pump reaches 400 ml/min driven by AC voltage of 80 V under the frequency of 1 350 Hz. It concludes that the design can enhance the performance of the pump effectively
and meets the demand of the high flow rate valve-less pump in engineering practices.
MAKIHARA K, ONODA J, MIYAKAWA T. Low energy dissipation electric circuit for energy harvesting[J].Smart Materials and Structures, 2006,15:1493-1498.[2] 袁江波,谢涛,单小彪,等. 压电俘能技术研究现状综述[J]. 振动与冲击,2009,28(10):36-41. YUAN J B, XIE T, SHAN X B, et al.. A review of current situation for piezoelectric energy harvesting [J]. Journal of Vibration and Shock, 2009,28(10):36-41. (in Chinese)[3] LEFEUVRE E, BADEL A, RICHARD C, et al.. A comparison between several vibration-powered piezoelectric generators for standalone systems[J]. Sensors and Actuators, 2005,126:405-416.[4] LALLART M, GUYOMAR D. An optimized self-powered switching circuit for non-linear energy harvesting with low voltage output[J]. Smart Materials and Structures, 2008,035030.[5] 袁江波,谢涛,单小彪,等. 悬臂梁单晶压电发电机的实验[J]. 光学 精密工程,2009,17(5):1072-1076. YUAN J B, XIE T, SHAN X B, et al.. Experiment of monocrystal piezoelectric generator with cantilever beam structure [J]. Opt. Precision Eng., 2009,17(5):1072-1076. (in Chinese)[6] 阚君武,唐可洪,王淑云, 等. 压电悬臂梁发电装置的建模与仿真分析[J]. 光学 精密工程,2008,16(1):71-75. KAN J W,TANG K H,WANG Sh Y, et al.. Modeling and simulation of piezoelectric cantilever generators[J]. Opt. Precision Eng., 2008,16(1):71-75. (in Chinese)[7] JI H L, QIU J H, ZHU K J, et al.. Two-mode vibration control of a beam using nonlinear synchronized switching damping based on the maximization of converted energy[J].Journal of Sound and Vibration,2010,329:2751-2767.[8] GUYOMAR D, BADEL A. Nonlinear semi-passive multimodal vibration damping: An efficient probabilistic approach[J].Journal of Sound and Vibration,2006,294:249268.[9] TAN Y K. Maximize piezoelectric energy harvesting using synchronous charge extraction technique for powering autonomous wireless transmitter[J].IEEE,2008:1123-1128.[10] LALLART M, LEFEUVRE E, RICHARD C, et al.. Self-powered circuit for broadband, multimodal piezoelectric vibration control[J]. Sensors and Actuators,2008,143:377-382.[11] LALLART M, GARBUIO L, PETIT L, RICHARD C, et al.. Double Synchronized Switch Harvesting (DSSH): A New Energy Harvesting Scheme for Efficient Energy Extraction[J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control,2008,55:2119-2129.
0
浏览量
757
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构